www.openwire.org
www.mitov.com

Copyright Boian Mitov 2004 - 2014

INSTAIIATION .ttt ettt e e 3
Where is InStrumentlab?......cveeeiiiiiiiiiiiiiiieiiiciiet et 3
Creating application with angular GAUGE........c.eeeueiiiiiiiiiiiiiiiii et eeeeeen, 3
Adding component elements t0 8 GAUGEueiuiiiueiiiriiiiiiiieiiiii et 5
Using the TSLCRealBuffer in C++ Builder and Visual CH..vveiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeee 8
Deploying your 32 bit application with the IPP DLLS.....ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeee, 10
Deploying your 64 bit apPIiCAtION. ...eu.eeeeeiiiieeeieeeiieeeieieeeeeeeeee ettt eeieeeeeeennnn 11

November 13, 2014 -2- InstrumentlLab 7.5

Installation

InstrumentLab comes with an installation program. Just start the installation by double-
clicking on the Setup.exe file and follow the installation instructions.

Where is InstrumentLab?

After the installation, start your Delphi or C++ Builder.
Scroll the Component Palette, until you see the last three tabs:

7 Delphi 7 - ScreenCapture

File Edit S5earch View Project Run Component Database OpenWire Tools Window Help ‘.‘[searchcnmpnnent] |<Nune> j 5_;: =1

|||||

Ldi) LFE;J = @ El I:‘é @ @ || Userlab Instrument Lab Ilnlelliuenca Lab | Loaic Lab | Additional | ‘win32 | Sustem | Data Access | Data Contrals | dbExoress | DataSnap 11+

sEmE|v-n - b BEER0OEEEH0EE =E R

If the installation was successful, they should be named “Signal Lab”, “UserLab”, and
“InstrumentLab”. On the SignalLab palette you will have only a subset of the SignalLab
components. SignalLab is a separated product, and will not be shipped as full with
InstrumentLab.

Only the following components of SignalLab will be available:

The following UserLab components will also be available:

7 Delphi 7 - ScreenCapture

File Edit 5earch View Project Run Component Database OpenWire Tools Window Help ‘.‘[searchcumpunent] |<None> j #3 =g

.....

b | [@ ~E @ E‘ @ @ & User Lab 1 Instrumentt Lab | Inteliaence Lab | Loaic Lab | Additional | ‘win32 | Sustem | Data Access | Data Contrals | dbExoress | DataSnap 41+

SEmE| e -n ;e A=

Creating application with angular gauge

From the Delphi/C++Builder menu select | File | New | Application |.
7 Delphi 7

File | Edit Search View Project Run Component Database Openwire Tools ‘Window Help <Maoner - 53-
| Mew » ||E Application |udi0 Lab] Sianal Lab] .&dditional] Win32] Sustem] Dataﬂccess] Data Eontrols] dbExDress] [LI_'
3 open... L% Application | 7 533 Al g g 0 S g [E &
(= Open Project... Crl+FLL Data Module
Reapen v | Form
Frame
1 Unit
?j Other...
HL Exit

An empty form will appear on the screen.

From the “Component Palette” select the “Instrument Lab” tab:

November 13, 2014 -3- InstrumentlLab 7.5

[= Instrument Lab

»'E TILLinearGauge
W TILSpectrumbisplay
Bl TLMatrixDisplay

TILSegmentText

m

select and drop on the form the following component:

- TILAngularGauge

From the “Component Palette” select the “System” tab:
+ Win32 =

[= System |
@ TTimer

p TPaintBox

J TMediaPlayer

From the tab select and drop on the form a TTimer component.

- TTimer

Select the Timer1 component on the form:
@ Forml

In the “Object Inspector” set the Interval to 100:

Object Inspector @
Timerl TTimer B
Properties | Events
Enabled S| True
2 |Interval 100
MName Timer1
Tag o]

Double-click on the Timerl.

If you are using Delphi add the highlighted code to the Timer1Timer event in the
Unitl.pas file:
procedure TForml.TimerlTimer (Sender: Tobject) ;
begin
ILAngularGaugel.Value := Random(100) ;
end;

November 13, 2014 -4- InstrumentlLab 7.5

If you are using C++ Builder add the highlighted code to the Unitl.cpp file:

void fastcall TForml::TimerlTimer (TObject *Sender)
{
ILAngularGaugel->Value = rand() * 100 / RAND MAX;

}

Compile and run the application.

You should see gauge showing the random values:
0 Forml Iilﬂléj

0 N
‘1' o0 o)

._ T - !
- 0 100 .5
¢ ILAngulanEasge1 &

You have just learned how to use InstumentLab gauges.

Adding component elements to a gauge

Open the application already created in the “Creating application with angular gauge”
chapter.

Double-click the Gaugel:
€ Form1 [E=3EoH ==

a0 o
0
L

-1 h)/ oo f 0T

e -y ...
¥ wo S
'ILAngularGaugﬂ A T

e~ —— ..

The “Component Editor” will appear:

@ Compeonents editor : ILAngularGaugel =N X
M ame Type Type
" fdd >--°E Dizplayz
-T2 Images
Uit -T2 Labels
-T2 Gauges
ke -T2 Indicators
-T2 Clocks
Up -T2 Panels
--T8 Hands
Diown
Bename as :
o Ok

November 13, 2014 -5- InstrumentlLab 7.5

In the “Component Editor” add TILExternalGaugeHandElement:

r@ Compeonents editor : ILAngularGaugel l =NESN X
M ame Type g Type
@ Add
E.\; ILExt... TILE=ternalGaugeHan... %] :E :_n;abgenlass i
& Insert T8 Gauges
5 T8 Indicators
l = Qelete] T8 Clocks
T8 Panels =
Up 4-T8 Hands
if :‘. TILExtemalGaugeHandEle
Dy " TILGaugeMintd axHandE ler
[\.., TILE stemalG augeContralH
4 I 3
Bename az :
o Ok
Click “OK™.
If you are using Delphi add the highlighted code to the Timer1Timer event in the
Unitl.pas file:
procedure TForml.TimerlTimer (Sender: Tobject);
begin
ILAngularGaugel.Value := Random(100);
ILExternalGaugeHandElementl.Value := Random(100);
end;

If you are using C++ Builder add the highlighted code to the Unitl.cpp file:
void fastcall TForml::TimerlTimer (TObject *Sender)
{
ILAngularGaugel->Value = rand() * 100 / RAND MAX;
ILExternalGaugeHandElementl->Value = rand() * 100 / RAND MAX;

}

Compile and run the application.
You should see gauge showing the random values with both the hands:

@ Forml =)

/

- O 100 2
IIJ«nguleeruqe'y
’

-

Stop the application.

Double-click the Gaugel:

November 13, 2014 -6- InstrumentlLab 7.5

In the “Component Editor” add TILThermometerElement:

(@ Components editor : [LAngularGaugel @El_z_hj

Tupe

Mame Type

m,\ ILExt.. TILExternalGaugeHar...
8T IcILTh.. TILThermometerElement

2-T8 Gauges -
o TILLinearG augeE lement

;E TILExtemallineari augeEls —
-8 TILSegmentGaugeElement
! TILE&temals egmentG auge| -
----- [°c TILThermometerElement| |
----- ["‘C TILE=temalThemometerEl
@m0 T|LProgressBarElement
Down -0 T|LEstemalProgressBarEle
-# 7% TILAngularE augeE lement
— ¥ Ej TILE stemalfngularE augeElemer

|

4 T L

Bename as :

o 0K

In the “Component Editor” add TILLevelDetectElement:
r@ Compeonents editor : ILAngularGaugel lilﬂlﬂ_hjw

Type
-T2 Labels -
> -8 Gauges
4-T2 Indicators
Lo TILExtemalSegmentT extEl
TILE:temalSegmentindicat) _
G TILLevelLedElement 3
E@ TILEstemalevelLadE leme
-2 TILExtemaMultiLedE lemer|
-2 TILE#temalledE lement
@ TILLevelDatectledElemen

b -8 Clarks
4| 1 | 3

Mame Type

E.\ ILExt... TILEsternalGaugeHan...
#T [ILTh.. TILThemometerElement
ELDJQEL ILLe... TiLLevelDetectledEle...

Bename az :

o 0K

Click on the ILLevelDetectElement]1 to show its properties in the “Object Inspector”.
In the “Object Inspector”, set the Level property to 50:

Object Inspector @
TLLevelDetecti edElement1 T v |

Properties | Events

InactiveColor {TILInactiveC »

Left 0

|Level 50|

Margins {TMargins)
Mode dmabove El

Compile and run the application.

November 13, 2014 -7- InstrumentlLab 7.5

You should see gauge showing the random values with both the hands, the LED will be
On when the first hand 1s above 50 and the Thermometer will show the value of the first
hand:

¥ Forml | =HAE i&1

- 0 @ 10
ILAngulanEasge! & rd

You have just learned how to create composite components in InstumentLab.

Using the TSLCRealBuffer in C++ Builder and Visual C++

The C++ Builder version of the library comes with a powerful data buffer class, called
TSLCRealBuffer.

The TSLCRealBuffer is capable of performing basic math operations over the data as
well as some basic signal processing functions. The data buffer also uses copy on write
algorithm improving dramatically the application performance.

The TSLCRealBuffer is an essential part of the SignalLLab generators and filters, but it
can be used independently in your code.

You have seen already some examples of using TSLCRealBuffer in the previous
chapters. Here we will go into a little bit more details about how TSLCRealBuffer can be
used.

In order to use TSLCRealBuffer you must include SLCRealBuffer.h directly or indirectly
(trough another include file):

#include <SLCRealBuffer.h> .

Once the file is included you can declare a buffer:
Here is how you can declare a 1024 samples buffer:
TSLCRealBuffer Buffer(1024);

Version 4.0 and up does not require the usage of data access objects. The data objects are
now obsolete and have been removed from the library.

You can obtain the current size of a buffer by calling the GetSize method:
Int ASize = Buffer.GetSize(); // Obtains the size of the buffers

You can resize (change the size of) a buffer:
Buffer.Resize(2048); // Changes the size to 2048

You can set all of the elements (samples) of the buffer to a value:
Buffer.Set(30); // Sets all of the elements to 30.

November 13, 2014 -8- InstrumentlLab 7.5

You can access individual elements (samples) in the buffer:

Buffer [5] = 3.7; // Sets the fifth elment to 3.7
Double AValue = Buffer [5]; // Assigns the fifth element to a vari-
able

You can obtain read, write or modify pointer to the buffer data:

const double *data = Buffer.Read() // Starts reading only
double *data = Buffer.Write()// Starts writing only

double *data = Buffer.Modify()// Starts reading and writing

Sometimes you need a very fast way of accessing the buffer items. In this case, you can
obtain a direct pointer to the internal data buffer. The buffer is based on copy on write
technology for high performance. The mechanism is encapsulated inside the buffer, so
when working with individual items you don’t have to worry about it. If you want to
access the internal buffer for speed however, you will have to specify up front if you are
planning to modify the data or just to read it. The TSLCRealBuffer has 3 methods for
accessing the data Read(), Write(), and Modify (). Read() will return a constant pointer to
the data. You should use this method when you don’t intend to modify the data and just
need to read it. If you want to create new data from scratch and don’t intend to preserve
the existing buffer data, use Write(). If you need to modify the data you should use
Modify (). Modify () returns a non constant pointer to the data, but often works slower
than Read() or Write(). Here are some examples:

const double *pcData = Buffer.Read(); // read only data pointer

double Value = *pcData; // OK!
*pcData = 3.5; // Wrong!
double *pData = Buffer.Write(); // generic data pointer

double Value = *pData; // OK!
*pData = 3.5; // OK!

You can assign one buffer to another:

Bufferl = Buffer2; .

You can do basic buffer arithmetic:

TSLCRealBuffer Bufferl(1024);
TSLCRealBuffer Buffer2(1024);
TSLCRealBuffer Buffer3(1024);

Bufferl.Set(20.5);
Buffer2.Set(5);

Buffer3 = Bufferl + Buffer2;
Buffer3 = Bufferl - Buffer?2;
Buffer3 = Bufferl * Buffer2;
Buffer3 = Bufferl / Buffer2;

November 13, 2014 -9- InstrumentlLab 7.5

In this example the elements of the Buffer3 will be result of the operation (+,-,* or /)
between the corresponding elements of Bufferl and Buffer2.

You can add, subtract, multiply or divide by constant:
// Adds 4.5 to each element of the buffer
Bufferl = Buffer2 + 4.5;

// Subtracts 4.5 to each element of the buffer
Bufferl = Buffer2 - 4.5;

// Multiplies the elements by 4.5
Bufferl = Buffer2 * 4.5;

// Divides the elements by 4.5
Bufferl = Buffer2 / 4.5;

You can do “in place” operations as well:
Bufferl += Buffer?2;
Bufferl += 4.5;

Bufferl -= Buffer2;
Bufferl -= 4.5;
Bufferl *= Buffer2;
Bufferl *= 4.5;
Bufferl /= Buffer2;
Bufferl /= 4.5;

Those are just some of the basic buffer operations provided by SignalLab.

If you are planning to use some of the more advanced features of TSLCRealBuffer please
refer to the online help.

SignalLab also provides TSLCComplexBuffer and TSLCIntegerBuffer. They work
similar to the TSLCRealBuffer but are intended to be used with Complex and Integer
data. For more information on TSLCComplexBuffer and TSLCIntegerBuffer please refer
to the online help.

Deploying your 32 bit application with the IPP DLLs

The compiled applications can be deployed to the target system by simply copying the
executable. The application will work, however the performance can be improved by also
copying the Intel IPP DLLs provided with the library.

The DLLs are under the [install path]\LabPacks\IppDLL\Win32 directory([install path]
is the location where the library was installed).

In 32 bit Windows to deploy IPP, copy the files to the [Windows]\System32 directory on
the target system.

In 64 bit Windows to deploy IPP, copy the files to the [Windows]\SysWOW64 directory
on the target system.

[Windows] is the Windows directory - usually C:\WINNT or C:\WINDOWS

This will improve the performance of your application on the target system.

November 13, 2014 -10- InstrumentlLab 7.5

Deploying your 64 bit application

The current version of the library requires when deploying 64 bit applications, the Intel
IPP DLLs to be deployed as well.

The DLLs are under the [install path]\LabPacks\IppDLL\Win64 directory([install path]
is the location where the library was installed).

To deploy IPP, copy the files to the [Windows]\System32 directory on the target system.

[Windows] is the Windows directory - usually CAWINNT or C:\WINDOWS
This will improve the performance of your application on the target system.

November 13, 2014 -11- InstrumentlLab 7.5

	Installation
	Where is InstrumentLab?
	Creating application with angular gauge
	Adding component elements to a gauge
	Using the TSLCRealBuffer in C++ Builder and Visual C++
	Deploying your 32 bit application with the IPP DLLs
	Deploying your 64 bit application

