Open source project

OpenWire

Version 7.5

@ VLVidecHistogram - RAD Studio XE4 - Uni

File Edit Search View Refactor Project Run Compenent Tools Window Help @ Default Layout
DEHeROR-8|PI | BD: b~ | & & A I
S\ structure)2 | &Y welcome Page | [Ejunity| [Elunits | [Eunitt | [unitt | B units = & || Bg VLsimplevideo.dproj - Pro... (1[5

[zoom: 00% ~ @ Q@& = Eﬁv[é‘fg-@'|

File

[ViAViPayert Ay [VUmabispeyi | [SLScoig = & B WCustonFiterDemo.exe
-| oProgress Video 1Video UserCcm.roli] . InputFins - [VLCaptureBitmap. exe
-| tClack Audio 3 [E] VLVideoCapture.exe

= [E VLVideoHistogram.exe
£ (’.\ Build Configurations (D...
i1 () Target Platforms (Win32)
@ Unitl.pas

=[5 VLAudioDisplay.exe
i1 oy Buid Configurations (D... -

% ViHisiogrami
P"E.; Object Inspector os2 Lt
Properties T

% |Custom Build Tool T

Design Class

File Name Unitl.pas

C:\Program Files (x86)Embarcadero\RAD

Egwsi.. |%mod... | Zloata...
“j’ Tool Palette sz

Form Name Form1 . -

emtanepomt o melhase

-l . Lo Lo Lo Lo + Delphi Projects -

- P P P e + Delphi Projects | Delphi Files

- P P P e ¥ Other Files

+# C+-+Builder Projects | C++B...

+ Unit Test

+ Delphi Projects | Mobile Pro...

+# C++Builder Projects

i + Web Documents

+ C++Builder Projects | Data...

E + Delphi Projects | DataSnap ...

q + C++Builder Projects | Webs...

‘Custom Build Tool - P m + | [Delphi Projects | WebServic...
+ C++Builder Projects | WebB...

8 1 Insert Code ; Design ;, Opentifire | History + Delphi Projects | WebBroker

m

a0
|

www.openwire.org
www.mitov.com

OPEIN SOUICTE PIOJECE...vveuvieurerierieiteesieiteetesteesessteseeseesseessesseessesseassesseessesssessesssesseessssessseesssesesses 1

VETSION 7.5ttt a bt h e e h e bt e bt sb ettt e st et et et et ene e st eneenbeesnees 1

WHRAL'S NEW IN V7.5, ettt ettt ettt et s ae et bt e besae e te e st e teeseenbeeneeteeanneenn 4
WRA'S NEW IN V7.0t ettt ettt et e a et s be e bt sbe e te s bt e besbe e beeseeteeaneeenn 4
WRAL'S NEW IN VO0.0......ooiieiiiee ettt ettt et e st e e s st e seseeesesseensesssenseenaanseesnseenn 4
WRAL'S NEW IN V5.0t et ettt et e st e e s st e aesae e teeseenseeseenseeneenseeanneenn 4
WHat's NEW I VA5, ettt b et e b e bbbttt et et e b neee 4
WHhat's NEW TN VA3 ..ottt ettt b et e b e bt s bbb be st et e b b et e saeeea 4
WHhaL'S NEW TN VA.0...c.eieieee ettt et et a b e sttt eb e e bt s be et e besbe st enbeseneeaneeens 4
WHhAL'S NEW TN V3. 1.ttt a bttt e b e bt e bbbt e st et et e be e e anneans 4
WRAL'S NEW IN V3.0t ettt e et et e s bt e et sae e te e st e teeseeteeneenteeaneeean 4
WRA'S NEW IN V2.0, ettt ettt et e ae et bt e bt sh e e te s bt e besbe e beeseeteeaneeenn 4
WHRAL'S NEW IN V2.5, . ettt ettt ettt et e s st e e e s st e sess e e sesseensesseenseeneenseesnseenn 5
WHRAL'S NEW IN V2.4 ..ottt ettt ettt et e s et e e e s st e sesaeetesseenseeseenseeneanseeanneenn 5
WHat's NEW I V2.3t b bt bbbt bbbt et e e e neee 5
WHhat's NEW TN V2.2, ..ttt ettt s b e bbbt bbbt et b et e saaeea 5
WRAL'S INEW TN V2. 1.ttt a e bt a e bt eb e e bt s be et e be st e st enbeseneeaneeens 5
WHhaL'S NEW TN V2.0, .0ttt et et a bbbt bbbt eebe st et e beteneesnneens 5
WHRaAt's NEW IN V1.8t t ettt ettt et e s ae e e e s a e te s bt e teese et e eneenteeaneeenn 5
OPENWITE WED STEES....cueitiinieitieie ittt ettt et ettt e bt st e bt ee e bt en b e ebe et e eaee bt sseenbeeneesbeeneanaeas 5
5 1S3 1 USSP 5
080411 5) S SRRURP 6
Source, Sink Pins, and Multi SINK PINS..........cccoviiiiiiiiiiieieieeeee e eeeee s eraee e e e e e e eennannes 7
SEALE PIIS.....enteiteiet ettt b e bbb bttt ettt b e e bbbt sh et 12
Can I Use OpenWire for My Commercial Development?.............ccceevvierieeieenienieenieseeerieeeveenieesveeens 13
OPENWITE INSTALLALION.ccuiiiieiiiticiectieteete ettt ettt e ee et et e b e ese e teesteeseessesseessessaessessaessesseesnseeennns 13
OPCNWITE OVEIVICW.....eutieiiitieieettete et et et este et e te e s te bt es e bt emte st em e e eatemeeeseeaeeaeeseemtenseemtenbeensenneeeenneeennees 16
PIATOTINS. ...ttt ettt h et e h et e et et e st e e bt et e ebe et e e bt e e eh e et e enteesnteeeane 17
The OpenWire Graphical EdItOr.........cocuiiiiririiiniieneeeecteete ettt s 17
NAMINE CONVENTIONS. ...c..cuteuteiieiieiieieeteetenteet ettt et et eat et eteeteebesaestesbeste st e bensentensenteneenteenneenseenseenaeensee 19
How to Use the Demo PaCKAZE..........cceoviiiiiiiieiieiesieetese ettt ettt be et eesnbaeesaeesssaeenns 19
Connecting Pins at Design Time (Using Property Editors)..........ccevvreieriercienieienieieseeeeeceeeeee e 24
Connecting Pins At Run Time (From Inside Your Code)........ccevvieieriieieniieieiiieiesieeeece e e 25
Understanding Basic OPenWire PifS.........cccoovieriiiieriiiieiieiestieiesteer ettt ee st e sseseesaesaesveessessaessesseens 26
TOWODJECL. ...ttt ettt ettt ettt ettt et eb e e besb e e e e ae et e e essenseneeneeseesees e et e esesseseseasensensensaneenseenne 26
TOWBASICPIN. ¢ttt ettt et b et e bt e te s bt e bt s bt e bees e e beeesnbeesabeeenns 27
TOWPIIL ...ttt ettt ettt ettt et b e st et e et e et e eseeb e sessessessessessassessass et e eseeseeseesaesessessenseenseenssenses 29
TOWSINKPIN. ...ttt ettt ettt et et et et et e bessessessesseseesseseeseese et eesessesessesensansensansenseenns 30
TOWMUILISINKPIN. ¢..cteteiti ittt ettt ettt sttt ettt e 30
TOWSOUICEPIN. ...ttt bbbttt et b bbbt b e ettt sttt et b e saeeneee 30
TOWSHALEPIN. ...t ettt ettt b ettt e e st e st e st e b e e bt e bt sbeebesbeebebenbeenneesaeeneee 31
TOW StateDISPACRET.cviiiiiiieiiiiieiete ettt ettt e et et e eseesbeessesseessesseesseessseesssaeanns 31
Downstreams and UPSIIEAIMS.eiueeueeitieiertieteeteeteetteteetee et eteesteeseesteeseesbeeseesteensesseeneeeseeseeneensesneenseenns 32
Change of State BroadCasting..........c.ovuieiirieiiiiiee ettt sttt s s e e 32
OpenWire Stream INTEITACES.co.ivtiiirirtiieteeteeetet ettt ettt ettt s be b enrees 32
Connecting and HandShaKing...........ccccueoeririiiiiiiiiiccceeeetece ettt 36
Standard (Well-known) Interfaces and Standard Pin TyPes......c.ccvevvevieriieieniiniienicieeeeese e 39
CLOCKINE. ...ttt ettt ettt ettt et e st e e s teesae s st essesseenseesaenseesaenseessenseensesseensesseensesneensesseensesssesnseennses 39
Creating Components Using the Standard Interfaces and Pins..........c..ccovvieieviieieniicienee e 40
Using the Standard Source and Sink Pins In Your COmponents.............cceeeevvereerieneenieseesieeveesveeenns 40
Using the Standard State Pins In Your COmMpPONENts..........ccceeeeiuieiereeieneeese e siee e 43
How the Notify Really WOTKS.......coiiiiiiie et 45
Creating And Using Pins Implementing The Standard Interfaces............coccoevveeienevinininininicncnnenn 47
Defining Your Own Interfaces (Types Of Data)........cccceeveririneneninieieieieieieeeeeeneee e 53
OPENWITE 7.5 ittt ettt ettt ettt et e st estesaeebesseessessaesseessensaessenseessesseensesseensesssennsseenes 2

Creating A Pin Implementing Your INterface...........cccvevieiieiiiiieniieieececeet e 55
Creating A Pin Capable Of Sending Data Through your Interface............cccoevvevvieieviiiceiniicee e, 57
Registering Your Interface As a Standard ONE...........cccevvieieriieieniieiiiieie et ees 59
FUNCtion DePendenCies.coueiuiiiuieieitieieet ettt ettt sttt b et e e et e e ese e bt eneesae e e e eenneeen 59

11/13/14 2 OpenWire 7.5

TYPE DEPEINACTICIES. ... eeuvievienrieeietietteeteete et et et eteeteesbeeteesbeeseesbesssasseessaseessesseessesseessesssessesssessesseesnsesansns 60

Dynamic Streaming Order BalanCing............ccoovvevuiiierieiienieciesieeiesie ettt eae e ae e saesreessesseesnseeesnns 60
Dynamic Pin LiSES (ATTAYS).....eeouteueeruteierieeieeieete et eeteette e et e et es e bt es e s et eeesaeeeesbeeaesseenteeseenneeasnneesnseeenns 62
Creating Components UsiNg Pin LiStS......cc.eeruiiiiiiiiiiiieeeiee et s 63
Writing Threading Safe Components With OpenWire.........c..coecveiririnienininieneneneeneeeeeeeecee e 66
L0703 1 10] LD 3 10) & SRR 67

11/13/14 3 OpenWire 7.5

What's New In V7.5

Added Delphi and C++ Builder XE7 support
Redesigned to use the new free Mitov.Runtime library.

What's New In V7.0

Added Delphi and C++ Builder XES5, and XE6 support.

Added MAC and Android support.

Added more standard pin types.

Added support for auto component suggestion in OpenWire Studio.
Simplified locking interface.

Improved integration with the OpenWire Editor.

What's New In V6.0

Added Delphi and C++ Builder XE3, and XE4 support.

Dropped support for Lazarus and versions older than XE2.

Complete redesign to utilize the latest Delphi features such as anonymous methods and attributes.
Improved integration with the OpenWire Editor.

What's New In V5.0

Added Delphi and C++ Builder XE and XE2 support.
Improved Lazarus support.

64 bit compatible.

Improved threading support.

Added expandable editors support.

What's New In V4.5

Added multi sink support.
Improved Lazarus support.

What's New In V4.3
Added Delphi and C++ Builder 2010 support.

What's New In V4.0

Added Format Converters.

Added Lazarus support for Windows, and Linux
New threading lock mechanism.

Added debug subscription support.

What's New In V3.1

Fixed loading from Frames.
Fixed support for languages other than English in PinLists.

What's New In V3.0

Introduces a brand new design for resolving pending pin connections.

Introduces a better .NET proxy support.

Added ConnectAfter and ConnectToStateAfter method and design time support for notification
sequence control.

What's New In V2.6

Minor improvements.

11/13/14 4 OpenWire 7.5

What's New In V2.5

Improved multithreading support.
Added OperationID for the notify operations.
Added partial support for Delphi 10

What's New In V2.4

Multithreading support is added.

The FunctionSources and DataTyepeSources now are implemented as lists.
Improved data pumping support.

Delphi 2005 support is added.

What's New In V2.3

This version is mostly improved 2.2. No new features have been added, but there are some fixes.

What's New In V2.2

A new type of collection has been added, that supports expansion of the collection items inside the
Object Inspector.

What's New In V2.1

Clock pins have been introduced.
The help has been expanded.

What's New In V2.0

Added support for State Pins.
The notification mechanism is changed to work trough operation objects.
Standard pins made simpler to use.

What's New In V1.8

Improved pin editor.

The TOWPinList has owner.

New mechanism of obtaining names.

TPinType.RemoveType and TPinType.ClearTypes methods have been added.

OWRegisterStream adds support for global dispatchers.

Restricting and renegotiating handshaking with different type of data (DataType restriction support) is
finally implemented.

OpenWire Web Sites

The OpenWire web site: www.openwire.org
The Mitov Software web site: www.mitov.com

License

This software is provided 'as-is', without any express or implied warranty. In no event will the author
be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented - you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

11/13/14 5 OpenWire 7.5

http://www.mitov.com/
http://www.openwire.org/

Introduction

OpenWire is a technology allowing VCL and CLX components to exchange data and event
notifications among each other using unified basic framework.

OpenWire is free open source library, available at www.openwire.org.

OpenWire defines the way the components can integrate and exchange data and state information,
without having knowledge about each other.

OpenWire 2.0 defines 2 types of data exchange - Streaming and State. The Streaming is designed for
sending a contiguous data stream from source to recipient (Sink). It is used typically in Data Acquisition
and processing components. The State is used to synchronize the state of multiple components, or for
synchronization with database components. The Streaming and the State connections are created via
component properties named Pins. The Pins are one of the following 3 types — Source, Sink or State.
Source and Sink are considered Streaming pins, however they can be used for State connections, and can be
connected to State pins as well. The State pins are designed for exchanging state condition, but can be
connected to Source of Sink pins, and thus be used for data streaming as well.

11/13/14 6 OpenWire 7.5

http://www.openwire.org/

Source, Sink Pins, and Multi Sink Pins
Here is how a component, using OpenWire Source and Sink pins, looks like:

Component Output Pin

e

This component has 2 inputs and 3 outputs. The inputs and the outputs in OpenWire are called Pins.
The input pins are called Sinks and the output pins are called Sources.

Every source pin can be connected and deliver data to multiple sinks:

Component .
Component P Legend:
[:]NOH connected pin
Component [:]Connected pin
Component

One pin can stream different types of data, depend on what the sink will accept:

Component Legend:
Component

|:|Non connected pin

Component |:| Connected Pin(Float)
. Connected Pin(Integer)
. Connected Pin (Complex)
Component

EConnected Source Pin

In this example the source pin delivers different type of data to each sink pin.

The sink pins can be made to accept multiple types of data as well.

Every component may have as many source and sink pins as needed.

Version 4.5 also introduces a new type of multi sink pins. They can be connected to more than one
source pin.

The pins are properties and are as easy to add as adding any other properties. They are even easier to
add, then adding pointer to another component.

The pins are optimized for very high performance.

11/13/14 7 OpenWire 7.5

Here is a complex example of using pins:

h 4

All of the connections can be established at design time, without writing any code.
At run time you can connect, or disconnect 2 pins with only one line of code.

Here is an example of a very complex data processing application at design time. You can see the
OpenWire pins editor in action. In this case the editor is opened for a source pin connected to 3 sink pins.
— =] x|
Ele Edt Search Wiew Project Run Component Database Jools Window Help <Mone> v '53

O -3 ﬁ E G = @ Standard IAddiliDnaH 'win32 | Sustem | Datascoess | Data Contrals | dbExoress | DatsSnan | BDE | DO | InterBase | webServices | ImtemetEL‘_’

P50y Ny |k BFF AR wr c ig=C1E[]&

= =10] x| |ls] x|
IR andGient | i
Properties] Evenlgl ﬂ
High 32767
Lo 32767
Narne lIRandGend
Output [3 Linksz]
Samples 512
Seed 06132884
Tag 1] J
Connections - Source IRandGenl.Outp
450 500
Foim : |Form1 [Current]
#_ Sitk pin | Component | Connected to ‘ Connection T.. | 0
D Input lILowPass1 11D ataPumpl. Outputs. Pin [1] Birdirectional ...
D Input |IFourier! lIBandPazs1. Dutput Bi-directional ...
m Input lIB andPass1 IR andGenT. Output Bi-directional ...
m Input |IFournier? IR andGenT.Output Bi-directional
D Inputs.Pin [0] 11Plat] 11D atsPumpl.Outputs. Pin [0] Bi-directional
O inputs.Fin (0] NIPlat2 IIFourier . SpectiumDutput Bi-directional ... -
O inputs.Fin [0] D ataPumpl 11SigGen. Output Bi-directional ... L,J
D Inputz.Fin [1] 1IPlat1 11D ataPumpl. Outputs. Pin [1] Birdirectional ...
D Inputz.Fin [1] 1IPlot2 |IFourier2, Dutput Bi-directional ...
m Inputz.Fin [1] 11D ataPumpl IR andGenT. Output Bi-directional ... :“
D Inputs.Pin [2] 1IPlat] lIBandPass1.Output Bi-directional a 450 500 J
D Inputs.Pin [3] 1IPlat] lILowPass1. Output Bi-directional . . o
x Cancel
Links : 3 [™ Show all compatible pins nd processing, developed by Innovative-Integration
S Y ——— Thiz pragram has only 2 lines of code | Click here ta see the source,
[~
st HESE B PO BEOPELSH, Wy @Y oo

[lInbox - 0., | @CNN(DI‘H | EBiC++Build... @\"ahuo! - | Lé]\iisual Sou,. | @AYC - Micro... | DefConvert | @}Def Canw... | ‘dDebug ‘ @Q@Eﬂ

Here is the source of this sample:

#include <vcl.h>
#pragma hdrstop

#include "Unitl.h"

#include "Unit2.h"

#pragma package (smart init)
#pragma link "IIDataPump"
#pragma link "IICommonFilter"
#pragma link "IISigGen"
#pragma link "iComponent"
#pragma link "IIPlot"

fpragma link "iPlot"

11/13/14 8 OpenWire 7.5

#pragma link "iPlotComponent"
#pragma link "IIRandGen"
#pragma link "IIHighPass"
#pragma link "IILowPass"
#pragma link "IIFourier"
#pragma link "IIBandPass"
#pragma resource "*.dfm"
TForml *Forml;

___fastcall TForml::TForml (TComponent* Owner)
TForm (Owner)

{

}

void fastcall TForml::ButtonlClick (TObject *Sender)
{

IIDataPumpl->Start();
}

void fastcall TForml::Button2Click (TObject *Sender)

{
IIDataPumpl->Stop () ;

}

As you can see the OpenWire is very powerful and yet easy to use technology. In this release of
OpenWire, all of the connections at design time are established using property editors. A graphical editor
allows you to connect the pins, by just dragging connections between them is under development.

Here is how all of the connections in this application look like:

1 | -

IISigGenl IIDataPumpl ;-— IIPlotl

IILowPassl]
ITRandGenl

IIBandPassl

IIFourier2

IIPlot2
IIFourierl

11/13/14 9 OpenWire 7.5

Here is the same sample application at run time:

l“ Armada FFT demo

) [u] [4] &la] Cbk| | »|u]s)

Data

ok AR ARAAR) ===

NMI{\NM'!" M h‘ !H«ﬂ"M WWMN i |l'|'”;\|!H ”MI ‘W ‘\“\‘”M ~r 'q” n

100 150 200 260 300 350 400 450
[1]-Samples

l‘\ﬂ ‘\H\%I

0 |',I'||’||' |I|\J|| |\r'|'f'", |,\ (‘F'J i 'u”r\ﬁ'.'l'Jl' "Hli"tn fl*‘||"' f||”|"h'l|'|‘\(}|u|l i |’|||\LIFUH'I||H(‘H|\ 1'.‘|"|!|||J|'|IJ|I||"I.I IIU”H "’I;'Iﬂ(\""ll“‘ — o

an 00 120 140 160 180 200 220 240
[1]-kHz

Armada iz Dpent#ire based library for fast data acquisition and processing, developed by [nnovative-lntegration
This program has only 2 lines of code ! Click here to see the sounce.

Stop

The application is doing a lot with only 2 lines of code:

| 1IDataPumpl->Start () ;

and

‘IIDataPumpl—>Stop();

This application has been developed using the Armada VCL library, designed for very fast data
acquisition and processing.

Armada is developed by Innovative-Integration and is sold with their data acquisition boards, allowing
very fast and rapid development of complex real time data acquisition and processing applications.

You can learn more about Armada, Chico, Vista and Toro data acquisition boards at:
http://www.innovative-dsp.com.

OpenWire also allows many pins to be organized together in pin arrays. The pin arrays can be dynamic,
allowing the component users to specify how many inputs and outputs they need. In the example above the
first plot component has 4 input pins, the second only 2. They depend on the number of channels in the
component, and are entered at design time by the developer.

11/13/14 10 OpenWire 7.5

http://www.innovative-dsp.com/

Here is another example of OpenWire application, this time developed with the VideoLab set of
components available at http://www.mitov.com.

?-" Geometric Transforms

Original &4

Rotate

Mirrar Warp

I [=] 3

Here is how the connection diagram looks like in this application:

Dpenwire x|
EER NN S
1 10 0 30 L) a0 60 70
(IR RS RS R RS RS W . | [1 [| [1
1 viaviPert T WlrageDisplay]
2| * “oiFileMamePin OutputPincm—lnputPin | - - -
-| - -oEnablePin - AudioOutputFino - | - -
o |- TvLimageDisplay
] * TwlImageDisplay
g2 - Wllmagelisplayd:
I—+InputF'|n DutputPinHlnputPln
] - TWLimageDisplay
-] . Wllmagelisplay3:
ed o e
] CMLWarpl ool
2 o _%élllnputF'in OlutputPinc—-

And here is the source code in Delphi7:

unit Unitl;

interface

uses

11/13/14

11

OpenWire 7.5

http://www.mitov.com/

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
Forms, Dialogs, VLAVIPlayer, VLImageDisplay, StdCtrls, VLCommonFilter,
VLMirror, VLShear, VLRotate, ExtCtrls, VLGenericFilter, VLWarp;
type

TForml = class (TForm)

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4d: TLabel;

VLImageDisplayl: TVLImageDisplay;
VLImageDisplay2: TVLImageDisplay;
VLImageDisplay3: TVLImageDisplay;
VLImageDisplay4: TVLImageDisplay;
VLAVIPlayerl: TVLAVIPlayer;
VIMirrorl: TVLMirror;

VLRotatel: TVLRotate;

VLShearl: TVLShear;
VLImageDisplay5: TVLImageDisplay;
VLImageDisplay6: TVLImageDisplay;
Label5: TLabel;

Label6: TLabel;

VLWarpl: TVLWarp;

VLWarp2: TVLWarp;

procedure VLGenericFilterlFilterData (Sender: TObject;

var OutBuffer: Variant;

Boolean) ;

InBuffer: Variant;
var SendOutputData:

end;
TForml;

var Forml:

implementation
{SR *.dfm}

end.

The application contains zero lines of code

State Pins

State pins are designed primarily for exchange component state information. As example a CheckBox
component can have StatePin connected to StatePin of a Timer, and to StatePin of a Led components. In
this case if you click on the CheckBox you will enable/disable the timer as well, as you will turn the Led

on/off. Here is how the connections will look like in this case:

State dispatcher

State Pin

CheckBox
Component Legend:
Timer
Component [:]
LED
Component

11/13/14 12

OpenWire 7.5

Any time when you have State pin connected to one or more other pins, a hidden object named
StateDispatcher is created. The object is responsible for holding the list of connected pins, and serves as
event dispatcher. If you click on the CheckBox, the State pin will send the notification to the Dispatcher,
and the dispatcher will send it to the rest of the pins. If you enable/disable the timer from within Delphi or
C++ Builder code, the Timer itself will notify the CheckBox and the LED for the change of it’s status.

You can connect One Source pin to a StateDispatcher, and thus use it as a state source. You can also
connect any number of SinkPins to the StateDispatcher, and they will be notified for the change of state.

In order for a pin to be able to connect to a StateDispatcher, the pin should be able to be connected with
any of the pins connected to the dispatcher. The pin can use a different interface for each of the pins
connected to the Dispatcher.

Can | Use OpenWire for My Commercial Development?

OpenWire is a free open source project. It can be used for any free or commercial project. You can
define any type of proprietary pins, and you are not required to register them. However once you have
created a well-defined data type, you may consider submitting it to the OpenWire web site, or using some
other means of making it public knowledge. It will allow other developers to develop components capable
of exchanging data with your set of components, and this way increasing the value of your product. Any
changes to OpenWire as core done by you going into a public product, are required to be sent to the author
of OpenWire, or the OpenWire committee in the future, in order to keep consistency of the standard. You
are not required to provide any source code with any of your final products if they use OpenWire. Feel free
to distribute them in any form you want. OpenWire is developed by Boian Mitov and as such you cannot
claim it as your own product or development. Any references in your documentation to OpenWire should
not refer to it as a technology developed by you or your company. You can charge any amount of money
for any product developed using OpenWire. OpenWire is free and you don't have to pay any royalties or
other fees in order to use it. However you can't charge for OpenWire itself other than shipping or packaging
fees. The core technology is free and cannot be sold as standalone item.

OpenWire Installation

The following screenshots are taken from a real installation with a particular version of the installer.
Though they will remain mostly the same among the different versions of the installation, some minor
differences may exist.

After launching the installation the following screen will appear:

setwr x|

Welcome to the OpenWire version
2.0 Setup Wizard

Thiz will install Operiw/ire werzsion 2.0 on your computer.

It is recommended that pou cloge all other applications before
cantinuing.

Click Mest to continue, or Cancel to exit Setup.

Cancel |

11/13/14 13 OpenWire 7.5

Press Next. You will see the License agreement screen:
setup x|

Licenze Agreement
Please read the following important information befare continuing.

Please read the following Licenze Agreement. Y'ou must accept the terms of thiz
agreement befare continuing with the installation,

Thiz software is provided 'as-is', without any express or
implied warranty. In no event will the author be held lisble
for any damages arizsing from the use of this software,

Permizsion is granted to anpone to uge this software for any
purpoze, including commercial applications, and ta alter it
atd redistribute it freely, subject to the following

restrictions:

1. The arigin of thiz software must not be misrepresented,
you muzt nat claim that you wrote the oniginal software. LI

" | do not accept the agreement

< Back I Mest » I Cancel |

Read the text, and select “T accept the agreement” if you agree.
Press Next. You should see screen similar to the following one:

x|
Select Delphi and C++ Builder w
What product you want ta install for? /i
F ¥ peniir

Select the product to install for, then click Mest.

" Delphi &
(" C++ Builder &
" C++ Builder 5

< Back I Mext > I Cancel |

The content of this window will differ depend on the products you have installed on your system.
If you don’t have any Delphi 5.0 or higher or C++ Builder 5.0 or higher installed, or the installation is

unable to find the product, you will be able to install in a custom directory.

First make sure you have closed your C++ Builder and Delphi environments.

11/13/14 14

OpenWire 7.5

Select the product you wish to install, and click the Next button.

Select Components
‘which components should be installed?

Select the components pou want to ingtall; clear the components you do not want to
inztall. Click Mext when pou are ready to continue.

Package Files

Help File:

Sources Files

S wiord D ocumentation
Openwire Lab Dema
Opentafire Lab Dema Projects

Current selection requires at least 5.6 MB of disk space.

< Back I Mest » I Cancel

Here you can select the items you want to install.
After making the selection, press Next:

Ready to Install
Setup iz now ready to begin ingtalling O peniwire vergion 2.0 on your computer.

Click. Inztal to continue with the installation, or click Back if pou want ta review or
change any seftings.

Setup type: ;I
Full install

Selected components:
FPackage Files
Help Files
Sources Files
M5 Word Docurmentation
Opert+fire Lab Demo
Opertafine Lab Demo Projects

< Back

Here is your last chance to confirm the selection. If you are satisfied with the selection, press Install.
The program will install OpenWire automatically.

11/13/14 15 OpenWire 7.5

After the installation the following screen will appear. If you would like to add the OpenWire help file
to your Delphi/C++ Builder help system, check the box and Click Next.

Setup X
Register the Dpenwire Help Files w
Do you want to register the Openiwire Help Files in Delphi or C++ Builder IDE? f
! g p p p penVi
Check the box if you want ta register the Dpeniwire Help Files inside your IDE, then

click Mext.
v Fenster the Help Files in Belphi/Ces Bulder I0E:

Mext » I Cancel |

This will be the end of the installation process. When the final window appear, Click the Finish Button.

WARNING: If the installation is unable to find your Delphi or C++ Builder, then you will see an
additional window, asking for the directory where the files will be installed.

OpenWire Overview

In OpenWire, the connections among the components are established through small objects named Pins.
OpenWire Version 1 defines 2 types of pins — SourcePins and SinkPins. Each component may have one or
more pins of both types. One SourcePin can be connected to multiple SinkPins allowing very flexible and
powerful designs. OpenWire 2 adds StatePins. StatePins can be connected in groups of pins via hidden
internal objects named StateDispatchers. Each group of StatePins is capable of exchanging information
about the change of state of a pin in the group, to be reflected in the rest of the pins. This allows
maintaining of a state among the group of StatePins. In addition a single SourcePin can be connected to a
StateDispatcher, serving this way as a State source for the StatePins connected to the dispatcher. Any
number of SinkPins can be connected to the StateDispatcher as well, this way allowing the pins to be
notified about a change in the State of the Dispatcher.

The main purpose of OpenWire is to allow different components to be able to connect without even
knowing about each other. The real connection is established among the pins. The pins are communicating
to each other using Delphi interfaces. This way if the interface has the same GUID and entries, both
components are able to exchange data although two different companies may have designed them.

OpenWire doesn’t contain any components; neither does it specify any component hierarchies. Instead
specifies the basic pins hierarchy as well as some of the basic Interfaces. The purpose is to build a growing
database of registered Interfaces over time allowing more and more components from different vendors to
be able to work together. A nice feature is the fact that any pin can support multiple interfaces. This may
sound complex but as you will see later implementing a pin support in a component is just few very simple
lines of code and is even easier than supporting a pointer to another component as example. In addition
OpenWire defines dynamic arrays of pins allowing easily creating components with multiple inputs and
outputs organized into dynamic arrays i.e. you can change the number of inputs or outputs as result of other
settings in the component. A good example is an “add” component that has a user defined number of inputs
and output which is result of the sum of the inputs. OpenWire doesn’t define the way you develop your
components or a component hierarchy instead it focuses on pins and interfaces. Indeed you can take any
existing component and add pins to it with a minimal effort, in many cases easier than adding a new
property.

The mechanism of sending data from pin to pin is called Stream. There are 2 types of streams in
OpenWire Version 1. Upstreams and Downstreams. You are sending data or notification downstream when
the source pin calls interface functions in the sink pins, it is connected to. In this case the data gets
delivered from source pin into sink pin. Upstream is the opposite. In this case the sink pin calls an interface

11/13/14 16 OpenWire 7.5

function inside the source pin, usually in order to ask for data or to send change of condition notification.
OpenWire 2 adds another exchange mechanism — change of state broadcast. Change of state broadcast
allows multiple components to maintain the same state among each other.

Platforms

The current version of OpenWire supports Delphi 5.0, Delphi 6.0, Delphi 7.0, Delphi 2005, Delphi
2006, Delphi 2007, Delphi 2009, Delphi 2010, C++ Builder 5.0 and C++ Builder 6.0, C++ Builder 2006,
C++ Builder 2007, C++ Builder 2009, C++ Builder 2010, and Lazarus under Windows and Linux.

The OpenWire Graphical Editor

An OpenWire graphical editor is available. The editor allows users to connect pins by visually dragging
connections between them. Here is a preview of the current version of the editor:
73 VLVideoHistogram - RAD Studio XE4 - Unit

File Edit Search Wiew Refactor Project Run Component Tools Window Help {i® | Defaultlayout ~| &5
HFTme DHH-B| IS AED - &~ | & & @ M
AN structure 755 | @& welcome Page | [Unitt | [B]unit1 | [B unit | B unitt | [unitt v 5 || B VLSimplevideo.dproj - Pro...][5

Zoom: 100% 'Rh\,{_x E"£|E@v|
T A R AT ----|<5:>'F:a

......................... | -0~

= L &
B

File
VLCustomFilterDemo. exe -
VL CaptureBitmap.exe

YLvideoCapture, exe il
=] VLVideoHistogram, exe |=|

=)

Progress Video
Clock Audio

&- Build Configurations (D...
() TargetPlatforms (Win32)
[E] unit1.pas

=] YLAudioDisplay. exe
@- Build Configurations (D... -

10
|

}% Object Inspector gz

¥ | Custom Build Tool T
Design Class L

File Name Unit1.pas b Hil Tool Palette [
Form Mame Form1 oo

fomtame ot lw L |] R [

Sl . Delphi Projects -
......................... . Delphi Projects | Delphi Files |
......................... . Other Files
C++Builder Projects | C++B...
Unit Test =
Delphi Projects | Mobile Pro...
C++Builder Projects
| ‘Web Documents
8- C++Builder Projects | Data.. —
Delphi Projects | DataSnap -..
C++Builder Projects | Webs...
‘Custom Build Tool . 4 1 b Delphi Projects | WebServic...

C++Builder Projects | WebB...
@ 1 Insert Code . Design |, Open\Wire /,History Delphi Projects | WebBroker

== -

C:\Program Files (x86)\Embarcadero'RAD

Eowisi.. | TFmod... | Hpata...

11/13/14 17 OpenWire 7.5

Here is the editor showing the connections in the OpenWire lab demo example:

E‘Dpen\'ﬁm@u)ﬁcj

File Edit Search View Refactor Project Run Component Tools Window Help 0% @ Defaultlayout - | &1 &),
HFETPR OFP-B/0F a8 P-#-IEH| s ¢~ - @&
OpenWiire Preview @ elcome Page it o 5 Qﬂ OpenWireDemoProject.d. .. @@
[zoom: 100% - @ Q2 = @'Ig|lgv|
10 20 0
_-.ml....‘.....”.‘...‘....‘.....H.c:Dfa|g§-é_3|
] 1l &~ 0~
] File
— gg-‘ ProjectGroupl
d E- @ OpenWireDemoProject.exe
i &= OWiTesiClockd A OwlLabei3 ‘OWLProgressBard & Build Configurations (Debug)
-l Out In Position L) Target Platforms (Win32)
A 3 Unitl.pas
a_
.&Sn'ucmra OpenWire Preview : =4 OwLLabel5
&£ Object Inspector (@) -
| E] - |&F OwidesiClock? | . = OwiiMuiiply i C:\Program Files (x86)\Embarcadero'RAD
. Outi—=y o G ~ | [Booee... [Fmod... | Hpata. |
- \Liin 11 - OWLDividei Hil Tool Palette @)
T Divisible Outc
a- e m v| l% | Q, Search
] “A OWlLabelZ Delphi Projects -
-|- In Delphi Projects | Delphi Files
- |#* OwWLTesiClocki| Other Files
T Outrimy [+ C++Builder Projects | C++B...
] o] Ao ::-lrt:::uiecnsm bile P :
- o >4 OwLabeld phi e Fro—
] " ;t:'[:l"e‘mmm Tu = C++Builder Projects
| NegativelnputFins Web Documents
8- Fin [0} [t C++Builder Projects | Data...
1 . Delphi Projects | DataSnap ...
N c © T | # C++Builder Projects | Webs...
| K [I J ’ Delphi Projects | WebServic...
93:73 C++Builder Projects | WebB...
rem 1 Insert ' Code Design |, OpenWire | History +/ Delphi Projects | WebBroker

This snap shot is taken with the editor showing the connections in the OpenWire lab demo exampl
5 osenwaeoaners T S e - -

Default Layout

File Edit Search View Refactor Project Run Component
HFHER DB -8/8&8 a8

OpenWire Preview

elcome Page Init1

Tools

Window Help

@

b-#&-NE s

€ -

» -

e e
&

el Qﬂ Open\WireDemoPr. .. @@

;%Strudura OpenWire Preview

#E Object Inspector (M)
|Form1 TForm1 E]
Properties | Events |
» [Action iR
ActiveControl |;J
Align alMone
AlignwithMargins | False
AlphaBlend [False
AlphaBlendvalue |255
Anchors [skLeft,akTop
AutoScroll [False
AutoSize [False
BiDiMode bdLeftToRigh
BorderIcons [biSystemMer
BorderStyle bsSizeable
Brrdarthinth n
ind Visually. ..

lew Visual LiveBindings ...

o

TestClock3

B -2 @ -
G Yt | B
H- O~

File

g?;' ProjectGroupl

B--@ OpenWireDemoProj...
: J@ Build Configuration...
J Target Platforms (...
i Unitl.pas

C:\Program Files (x86)\Embarcade

Boo.. [TPm.. [Elba...|

"j(Tool Palette @@
By v| % | Q, Search
Standard
Additional

Win32

System

Win 3.1

Dialogs

Data Access

Data Controls
dbExpress
Datasnap Client
Datasnap Server
BDE

Vista Dialogs

-

n

All shown

—

11/13/14

ron 1

Insert

' Code)\Daslgn J(OpenW\re J(H\smry J

18

[+ Gestures

OpenWire 7.5

Naming Conventions

All the OpenWire object names start with TOW... Examples : TOWSourcePin, TOW SinkPin etc.
All the OpenWire exposed global function names start with OW... Example : OWRegisterStream
All the OpenWire interface type names start with [OW... Example : IOWStream

How to Use the Demo Package

Select the OpenWire tab on the components palette.
[Delphi 6 - Project1

I File Edit Search \Miew Project Run Component Database Openiwire Tools Window Help

I

D& -E #2233
0 F 5

‘ & || IndvClierts | Indv Servers | Indw Misc | Servers Openiwie |

o[y -njea|h A

Click on TOWLTestClock component and drop it on the form, then click on TOWLLabel an also drop

it on the form as shown below:

Project Options |
Farmsz | Application | Cormpiler | Lirker |
Directanies/Conditionals Yersion Info | Packages

r— Directonies
Dutput directony: I jJ
Uit autput directory: I j J
Search path: I ﬂ
Debug source path: I jJ
EBPL output directan: I jJ
DCP output directony: I jJ
r— Conditionals
LConditional defines: I jJ
- Aliases
Urit aliazes: IWinTypes:Windows;WinF'rocs:W’indows;Dbi jJ
[Default oK | Cancel | Help |

Click on the “Search path” [...] button, and add the following paths:

[#: Directories

Greyed items denote invalid path.
[$ID elphilnD perivire [

Eeplace | £idd | Delete | DeletelnvalidEathsl

Cancel | Help |

11/13/14

19

OpenWire 7.5

Click OK.

If you are using C++ Builder: Open the Project Options:

Project Options for Projectl.exe 1[
Wersion Info I Packages I Tazm I CORBA I CodeGuard I
Formz I Application I Compiler I Advanced Compiler | C+ |
Pascal I Linker I Advanced Linker Directaries/Conditionals

i Directaries
Include path: |$[BCB Jhinclude;$(BCE Nincludewel $(B CE WO pj
Library path: I$[BEB]\Iib\obi;$[BEB]\Iib j J
Debug source path: I!B[BEB Isourcetwl j J
Intermediate output: I j J
Final output: I jJ
BPI/LIE output: | =]

i Conditionals
Condtional defines: | DEBUIG =]

— dliases
Uit sliazes: I jJ
[Default ak | Cancel | Help |

Click on the “Include path” [...] button, and add the following paths:

¢ Directories x|

Ordered list of Include paths:

[$IBLEJuincludetwe
$(BCE)\Dperiwiire
FBCE)ADpentiret0 penwireLabDemo

0
N

Greyed itemz denote invalid path.

[$IBCEinclude J

Eieplace | Lidd | Delete | DeletelnvalidEathsl

aK I Cancel | Help |

Click OK.

Click on the OWLTestClock1, switch to the Object Inspector. Select the Output property as shown on
the picture:

|
ID'W'LTestEIDck‘I T T estCl 'I
Properties I E'.,lentsl

Enabled True

Interval 1000
(LT 1000
kdin 1
Mame DL TestClock
Dutput
Step
Tag
&)1 shown 5

11/13/14 20 OpenWire 7.5

Click on the [...] button and the pins editor will appear:

[#: Connections - Source Pin : 0WLTestClock1.0utput N [m] |
FDII‘I‘IZIFDII‘Iﬂ [Current] j e o
B Sink pin | Camponent | Connected to | Caonnection ... | T T
O input Dw/LLabel Upen"l'u'lre
aﬂestare |
&= Link to all
Links: 0 [~ Show all compatible pins

Click on the check box:

[#: Connections - Source Pin : OWLTestClockl.Output B]
Form :IFnrm‘l [Current] j S i
B Sink pin | Component I Connected to I Connechon | [t i
B Input Dw/LLabel1 Upen‘ﬁ'lre
g Restore |
&4 Link to all
* Urlink, all
x Cahcel
Links : 1 [~ Show all compatible pins
and click the OK button. The form will change and will look like this:
_{olx|

1" Form1

Save and run the application. The number in the label will start increasing every second.
The OWLTestClockl component will generate increasing numbers and will send them via the pin to the
OWLLabell component. Here is how the diagram looks like:

OWLTestClock1 OWLLabell

Now let’s make the example a little bit more complex:

OWLTestClock1 OWLLabell

OWLAdd1 OWLLabel2

OWLTestClock2

11/13/14 21 OpenWire 7.5

We need another TOWLTestClock component and another TOWLLabel as well as TOWLAdd

components.

I" Form1

Select the OWLAdd] and the switch to the object inspector:

E
[owladdt TOwLadd -]

Froperties I Events |

Marne OwLaddi
HMNegativelnpul 1
Fir [0] [Dizconnected)
Cutput [Unlinked)
=] Pozitivel nput
Fir [0] [Mzconnected)
Tag a
|.~'1'«II showh i

Change the amount of positive inputs to 2. A new pin will appear:

k|
[owiaddt TOwiadd <]

Properties | Events |

M ame O Ldd
ElMegativel npu) 1
Fir [0] [Dizconnected)
Clutpuk [Unlinked]
E Positivelnputg 2
Fin [0] izcohnected]
Fir [1] [Dizconnected)
Tag 1]
|01 showan o

Double click on Pin [0] and the pins editor will appear:

[#: Connections - Sink Pin : OWLAdd1.PositiveInputs.Pin [0] N [m] |

FDII‘I‘IZIFDII‘Iﬂ [Current] j e ;

B Source pin | Camponent | Connections | Caonnection ... | T T
OpenWire

O Output /L TestClockl Ow/LLabel . Input Downztrean...

O Output O'wLT estClock2 <) Restore |

x Cancel |
Links: 0 [~ Show all compatible pins
11/13/14 22

OpenWire 7.5

Select the Output of OWLTestClockl :

[#: Connections - Sink Pin : OWLAdd1.PositiveInputs.Pin [0] N [m] |
FDII‘I‘IZIFDII‘Iﬂ [Current] j | Q
B Source pin |Eompnnent |Ennnectinn$ |Eonnection...| "o

OpenWire
@ Outpuat /L TestClock Ow/LLabel . Input Downztrean. .

O Ouput 0w/ LT estClock2 aﬂestare |

x Cancel
Links - 1 [~ Show all compatible pins
and click OK.
Then double click on Pin [1] in the object inspector and connect it with the Output of OWLTestClock2:
¥ Connections - Sink Pin : OWLAdd1.PositiveInputs.Pin [1] e =10 x|
Farm :IFDrm‘l [Current] j 22 .
¥ Source pin | Component | Connections | Connechion ... | ALl
: OpenWire
O Output /LT estClockl [2 Links] Diownztrean...
@ Output OWwLTestClock2 Sy Restore |
x Cahcel |
Links : 1 [~ Show all compatible pins

Click OK, and select the Output property in the Object inspector:
Object Inspector K|
IDWL.*—‘«du:I'I TOwLadd | = |

Properties | Events |

M arne OhwfLddl
E Megativel npu) 1
Fir [0] Dizgconnected

Outpuk
El Pozitivelnputs 2
Fin [0] LT estClock 1.0

Fin [1] LT estClock 2.0
Tag 1]

|.t'1'~II shown v

11/13/14 23 OpenWire 7.5

Click on the [...] button select Input of OWLLabel2:

¢ Connections - Source Pin : OWLAdd1.Output N [m] |

FDII‘I‘IZIFDII‘Iﬂ [Current] j w

B Sink pin | Camponent | Connected to | Caonnection ... | y
Open\ire

D Input hw/LLabell WL TestClock.Output Downztrean...

B input O'wLLabel2 <) Restore |
&% Link to aII|
* Unlink all

& OE

i

x Cancel

Links - 1 [~ Show all compatible pins

Click OK, compile and run. The application will show 2 numbers and one of them will increase 2 times
faster than the other. The value will be result of adding the data sent by the 2 timers.

You can continue to experiment with more complex connections. Please keep in mind that the
OpenWire demo lab package is just for demonstration purposes, and as such demonstrates just the very
basic OpenWire functionality. You can see the source code of the examples and you can create much more
powerful and robust components, based on OpenWire. One example of what can be achieved by OpenWire
is the Armada components set developed by Innovative-Integration http://www.innovative-dsp.con/ Please
feel free to check their web site. Please check also the OpenWire official site at http://www.openwire.org .
Another great example of advanced OpenWire components is the VideoLab set of components, available
from http://www.mitov.com .The OpenWire is under rapid development and expansion, and soon new
features and components will be available for download.

Connecting Pins at Design Time (Using Property Editors)

OpenWire provides two property editors to support the design time pins connection. The editors are
registered, so they will handle any component property of the type either sink or source pin. There are
property editors for the pin lists as well. If you open a source pin property editor dialog, you can establish
connections to multiple sink pins. When editing a sink pin, you can select only one source pin to be
connected to it. A graphic editor expert similar to the appearance of LabView and HP VEE is under
development, and will be available later this year.

Here is how the Source / Sink connection editor looks like:

¥ Connections - Source Pin : IIRandGen1.0utput =10l x|
Farm :IForm1 [Current) j m
5 Sink. pin | Component | Conhected to : | C-nn-nect.mn Type | GpGTIWiTG

Input lILowPazs1 11D ataPurnpl. Outputs Pin [1] - Bi-directional [11 float...
O inpw IIFourier] 1B andPass1. Output Bi-directional [11 float... % Restore |
E Input IIB andPazs1 IR andGenl . Output Bi-directional [[l float... =
Bl npuwt [IFourier2 IR andGent. Qutput Bi-directional (11 float... 3= Link to aII|
O InputsPin[0] 1Pt 11D ataPump . Outputz. Pin (0] Bi-directional [11 float...
O inputsFin (0] NIPIot2 IIFourier. S pecturmd utput Bi-directional [Il finat.. 3 Unlink al
D Inputz.Pin [0] 11D ataPunpl 11SigGenT. Dutput Bi-directional [[l float...
D Inputz. Pin 1] 11Platl lIDataPurmpl. Outputs. Pin [1] - Bi-directional [11 float...
D Inputz.Pin 1] 1IPlat2 lIFourier2. Output Bi-directional [[l float...
E Inputz.Pin 1] 11D ataPunmpl IR andGenl Output Bi-directional [[l float...
D Inputz. Pin [2] 11Platl 1IB andPasz1. Cutput Bi-directional [[l float...
D Inputz.Pin[3] 11Plat1 llLowPazs1. Output Bi-directional [[l float...

X Cancel |

Links: 3 [~ Shaow all compatible pins

In this case we are editing a source pin. We have selected to connect the pin to 3 sink pins. In the first
column we can see all the pins compatible with our source pin. In the second column are the components to
which those pins belong. In the third column we can see if the sink pin is connected to another source pin.

11/13/14 24 OpenWire 7.5

http://www.mitov.com/
http://www.openwire.org/
http://www.innovative-dsp.com/

In case there is a connection, we can see the negotiated Upstream and Downstream data type in the last
column. We can link the source pin to all the sinks, unlink it or restore the original connection by using the
buttons. In OpenWire 2 the editor is extended to support connecting Source/Sink pins to State pins and
State Dispatchers.
State pins introduced in OpenWire 2 can be connected using the State Pin connection editor:
}-“ Connections - State Pin : SCLed].5tatePin

FDrm:IDesignerFUlm [Current] j w
O-—-' DeagnerFDrlenk‘l [3] Wi
A YLAYIPlaverl .EnablePin

- SCCheckBox StatePin Hestore
- j‘ SCLedl.5tatePin —

(O SCCheckBox StatePin
(O SCled2 StatePin & Hename |

(O s VLAY Plaper2 EnablePin

x Cancel |

Links : LinkzCountlabel

Here 3 pins are connected together via dispatcher named DesignerFormLink1. Another 3 pins are not
connected. You can connect the pin either to a Dispatcher(group of pins), either to a non connected pin,
creating this way a new dispatcher. Once created, you can rename a dispatcher to give it a more reasonable
name. You can also use the Restore button, to restore the original connection of the pin, as it was at the
moment the editor was opened.

Connecting Pins At Run Time (From Inside Your Code)

At runtime you can connect two pins directly using the Connect function:

Delphi Example
if MyComponentl.Pinl.Connect(OtherComponent.Pin2) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->Connect (OtherComponent->Pin2))
// Successful connection

You can connect two pins via Dispatcher using the ConnectByState function:

Delphi Example
if MyComponentl.Pinl.ConnectByState(OtherComponent.Pin2) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->ConnectByState (OtherComponent->Pin2))
// Successful connection

You can disconnect a pin using the Disconnect procedure.

Delphi Example
MyComponentl.Pinl.Disconnect;

C++ Builder Example
MyComponentl->Pinl->Disconnect () ;

Connect will return True in case the connection can be established and False in case it can’t. In order
the connection to succeed the following conditions should be met:

11/13/14 25 OpenWire 7.5

One of the pins should be TOWSinkPin or TOW StatePin descendant and the other should be

TOWSourcePin or TOWStatePin descendant,

One of the pins should implement an interface, which the other knows how to deal with.
The two pins should not be in functional dependency of each other — as example if the source pin has

been calculated as result of the sink pin. In this case the source pin can’t connect to the sink pin for an

In case of a long chain of pins connected in type dependency, the entire chain might be restricted to use

a homogeneous interface. In this relatively rare case all of the pins will have to have at least one

ise the connection will fail.

If all of the above requirements are met, the connection will succeed and the Connect function will

2.
3.
obvious reason.
4,
common interface. Otherw
return True.

Understanding Basic OpenWire Pins

OpenWire Version 1 define

s 2 types of pins TOWSourcePin and TOWSinkPin. They both are inherited

from TOWPin. TOWPin is basic abstract class and can’t be used in any components.

TOWObject

This is the root class for all

the OpenWire objects. It provides the basic multithreading support.

You can lock an object for reading:

Delphi Example
var ReadLockSection
ReadLockSection :=
// The APin will
// function body.

IOWLockSection

APin.ReadLock () ;
be locked untill the end of the curent

C++ Builder Example
_di IOWLockSection
// The APin will
// function body.

ReadLockSection Pin->ReadLock () ;
be locked untill the end of the curent

You can lock an object for writing:

Delphi Example
var ReadLockSection

ReadLockSection
// The APin will
// function body.

IOWLockSection

APin.WriteLock () ;
be locked untill the end of the curent

C++ Builder Example
_di IOWLockSection
// The APin will
// function body.

ReadLockSection Pin->WriteLock () ;
be locked untill the end of the curent

You can make the object sha

re a lock with another object:

Delphi Example
APinl.AddShareLock (

APin2) ;

C++ Builder Example
APinl->AddSharelLock

(APin2) ;

You can separate the two objects locks:

Delphi Example
APinl.RemoveSharelo

ck (APin2) ;

11/13/14

26 OpenWire 7.5

C++ Builder Example
APinl->RemoveShareLock (APin2);

TOWBasicPin

This is an abstract base class for the TOWPin class and internal proxy pins created to support design
time pins across forms.

Two pins can be connected directly using the Connect member function.

Delphi Example
if MyComponentl.Pinl.Connect (OtherComponent.Pin2) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->Connect (OtherComponent->Pin2))
// Successful connection

Sometimes we want to make sure the pin we connect will receive data after another pin. This can be
achieved by using the ConnectAfter function. This function connects the 2 pins, and makes sure the data
recipient pin will be notified after the third pin is notified:

Delphi Example
if MyComponentl.Pinl.ConnectAfter (OtherComponentl.Pin2,
OtherComponent2.Pin3) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->ConnectAfter (OtherComponentl->Pin2,
OtherComponent2->Pin3))
// Successful connection

Two pins can be connected via Dispatcher using the ConnectByState function:

Delphi Example
if MyComponentl.Pinl.ConnectByState(OtherComponent.Pin2) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->ConnectByState(OtherComponent->Pin2))
// Successful connection

You can connect a pin to a State Dispatcher using ConnectToState function:

Delphi Example
if MyComponentl.Pinl.ConnectToState(AState) then
// Successful connection

C++ Builder Example
if (MyComponentl->Pinl->ConnectToState(AState))
// Successful connection

Sometimes we want to make sure the pin we connect will receive data after another pin. This can be
achieved by using the ConnectToStateAfter function. This function connects the pin to a state, and makes
sure the pin will be notified after the other pin is notified:

Delphi Example
if MyComponentl.Pinl.ConnectToStateAfter(AState,
OtherComponent.Pin2) then
// Successful connection

11/13/14 27 OpenWire 7.5

C++ Builder Example
if (MyComponentl->Pinl->ConnectToStateAfter (AState, OtherComponent-
>Pin2))
// Successful connection

At design time the connections can be established using a property editors. A graphic editor expert
allowing establishing the connections visually is under development.

For details on connecting pins please see “Connecting Pins At Design Time” and “Connecting Pins At
Run Time”.

You can disconnect a pin using the Disconnect procedure:

Delphi Example
MyComponentl.Pinl.Disconnect;

C++ Builder Example
MyComponentl->Pinl->Disconnect () ;

You can check if two pins can connect to each other using the CanConnectTo member function:

Delphi Example
if MyComponentl.Pinl.CanConnectTo(OtherComponent.Pin2) then
// The pins can connect to each other

C++ Builder Example
if (MyComponentl->Pinl->CanConnectTo (OtherComponent->Pin2))
// The pins can connect to each other

You can check if a pin can connect a state dispatcher by using CanConnectToState member function:

Delphi Example
if MyComponentl.Pinl.CanConnectToState(AState) then
// The pin can connect AState

C++ Builder Example
if (MyComponentl->Pinl->CanConnectToState(AState))
// The pin can connect AState

You can also check if two pins are compatible (can talk to each other through at least one type of
interface). To do so you can use the IsCompatible member function:

Delphi Example
if MyComponentl.Pinl.IsCompatible (OtherComponent.Pin2) then
// The pins are compatible

C++ Builder Example
if (MyComponentl->Pinl->IsCompatible (OtherComponent->Pin2))
// The pins are compatible

It’s not very likely for you to use this function however.
To check whether or not two pins are connected together use the IsConnectedTo function:

Delphi Example
if MyComponentl.Pinl.IsConnectedTo(Pin2) then
// The pins are connected

C++ Builder Example
if (MyComponentl->Pinl->IsConnectedTo(Pin2))
// The pins are connected

11/13/14 28 OpenWire 7.5

To check if a pin is connected you can use the IsConnected function:

Delphi Example
if MyComponentl.Pinl.IsConnected then
// The pin is connected

C++ Builder Example
if (MyComponentl->Pinl->IsConnected())
// The pin is connected

The Notify function:

function Notify(Operation : IOWNotifyOperation)
TOWNotifyResult; wvirtual; abstract;

will be covered in details later. It is used to send notification and deliver data Downstream or Upstream.
The Operation object parameter is used to specify a interface specific, user defined operation (as example
TOWSuppliedOperation, TOW StartOperation etc.) and if needed the object will contain the data to be
delivered to the recipient.

TOWPin

This is the base class for all the OpenWire pins.
The overloaded function AddType shown below is very important:

procedure AddType(ID : TGUID); overload;
procedure AddType(ID : TGUID; SubmitFunction : TOWSubmit);
overload;

They define the interfaces to which the pin can send data and notifications. Whenever you define new
pin capable of connecting to other pins implementing certain interface you should call this functions in
order to describe how you will call the interface and which interface it is. They can take one or two
parameters. The first one is the GUID of the interface you are in about to connect to. In Delphi you can use
the interface name as well as shown in the sample below. In C++ Builder you can use __uuidof in order to
obtain the interface GUID. The second parameter is a member function which will be called whenever the
pin wants to notify or send data to the other pin. We will cover these two functions later. The second
variant of the function is the one which was used most of the time in the previous versions of OpenWire. In
the new versions there is a mechanism for subscribing a default submit functions when registering a new
data type. OpenWire will use this function as a dispatcher if you don't specify your own dispatcher. In most
of the cases it is what you want. Here is a sample of how to register a pin to be able to talk to another one
implementing the IOWSomelnterface. This code will be usually part of the pins constructor:

Delphi Example
AddType (IOWSomeInterface, Notification);
AddType (IOWSomeInterface);

C++ Builder Example
AddType (_ uuidof (IOWSomeInterface), &Notification);
AddType (__uuidof (IOWSomeInterface)) ;

The RemoveType function:

procedure RemoveType(ID : TGUID);

Removes data type from the data types table for the pin. As result the pin will no longer be able to
connect to pins implementing this type of data interface.

Delphi Example
RemoveType (IOWSomeInterface);

C++ Builder Example
RemoveType (_ uuidof (IOWSomeInterface)) ;

11/13/14 29 OpenWire 7.5

The ClearTypes function:

procedure ClearTypes () ;

Clears all the registered data type interfaces:

Delphi Example
ClearTypes;

C++ Builder Example
ClearTypes () ;

TOWSinkPin
The following properties and functions are specific to the TOWSinkPin :

Properties:

e SourcePin — The source pin to which the pin is connected at the moment. NIL if not connected.

e DownStreamLinkName — Returns the name of the DownStream connection in case the pin is
connected. (Downstreams will be covered later)

e UpStreamLinkName — Returns the name of the UpStream connection in case the pin is connected.

(Upstreams will be covered later)

e DownStreamID — Returns the GUID of the DownStream connection in case the pin is connected.
(Downstreams will be covered later)

e UpStreamID — Returns the GUID of the UpStream connection in case the pin is connected.

(Upstreams will be covered later)

e IgnoreUpstream — if the sink pin implements upstream it will always check whether or not the source
pin you are connected to implements the stream, and if not will reject the connection. By setting this
flag to true, the pin will connect without checking for the upstream support. This feature is not often
used. (The upstreams and downstreams will be covered later.).

TOWMultiSinkPin
The following properties and functions are specific to the TOWMultiSinkPin :

Properties:

e SourceCount — the count of the source pins connected to the multi sink.

e Sources[] — List of Source Pins connected to the Sink Pin.

e DownStreamLinkName — Returns the name of the DownStream connection in case the pin is
connected. (Downstreams will be covered later)

e UpStreamLinkName — Returns the name of the UpStream connection in case the pin is connected.

(Upstreams will be covered later)

e DownStreamID — Returns the GUID of the DownStream connection in case the pin is connected.
(Downstreams will be covered later)

e UpStreamID — Returns the GUID of the UpStream connection in case the pin is connected.

(Upstreams will be covered later)

e IgnoreUpstream — if the sink pin implements upstream it will always check whether or not the source
pin you are connected to implements the stream, and if not will reject the connection. By setting this
flag to true, the pin will connect without checking for the upstream support. This feature is not often
used. (The upstreams and downstreams will be covered later.).

TOWSourcePin
The following properties and functions are specific to the TOW SourcePin :

Properties :
e SinkCount — the count of the sink pins connected to the source.
e Sinks[] — List of Sink Pins connected to the Source Pin.

11/13/14 30 OpenWire 7.5

e FunctionSources — List of function sources. (This will be covered later.)
e DataTypeSources — List of type sources. (This will be covered later.)

Example : Accessing all the sink pins connected to a source pin.
Delphi Example

Var I : Integer;

Var SinkPin : TOWSinkPin;

for I := 0 to SomeComponent.SomeSourcePin.SinkCount - 1 do
begin
SinkPin := SomeComponent.SomeSourcePin.Sinks[I];
end;

C++ Builder Example

for(int 1 = 0; 1 < SomeComponent->SomeSourcePin->SinkCount; i ++)
{
TOWSinkPin *SinkPin = SomeComponent->SomeSourcePin->Sinks[1];
}
TOWStatePin

The following properties and functions are specific to the TOW StatePin:

Properties:
e PinCount — the count of pins connected via State Dispatcher.
e Pins[] — List of the pins connected via State Dispatcher.

Example : Accessing all the pins connected to a state pin.
Delphi Example

Var I : Integer;

Var APin : TOWPin;

for I := 0 to SomeComponent.SomeStatePin.PinCount - 1 do
begin
APin := SomeComponent.SomeStatePin.Pins|[I];
end;

C++ Builder Example

for(int 1 = 0; 1 < SomeComponent->SomeStatePin->PinCount; i ++)
{
TOWPin *APin = SomeComponent->SomeStatePin->Pins[1];
}
TOWStateDispatcher

State dispatchers are created when 2 or more state pins are connected together. Source and Sink pins
also can be connected via Dispatcher in some cases.
You can check if a pin is connected to a dispatcher by calling the ContainsPin function:

Delphi Example
if AState.ContainsPin(APin) then
// The pin is connected to AState

C++ Builder Example
if (AState.ContainsPin(APin))
// The pin is connected to AState

You can disconnect all the pins connected to the dispatcher and this way destroy it using the
DisconnectAll procedure:

Delphi Example
AState.DisconnectAll;

11/13/14 31 OpenWire 7.5

C++ Builder Example
AState.DisconnectAll () ;

The following properties are specific to the TOWStateDispatcher:
e Name — the name of the State Dispatcher.
e PinCount — the count of the pins connected via the State Dispatcher.
e Ping[] — List of the pins connected via the State Dispatcher.

Example : Accessing all the pins connected to a State Dispatcher.
Delphi Example

Var I : Integer;

Var APin : TOWPin;

for I := 0 to SomeState.PinCount - 1 do
begin
APin := SomeState.Pins[I];
end;

C++ Builder Example
for(int 1 = 0; 1 < SomeState->PinCount; i ++)
{
TOWPin *APin = SomeState->Pins[i];
}

Downstreams and Upstreams

OpenWire Version 1 defines 2 types of streams — Upstreams and Downstreams. Downstream is the
most often used way of transferring data among the pins. Downstream transfer occurs when a Source pin
calls a member function of a sink pin interface inside the sink pins it is connected to. In order to force the
Downstream to occur you simply have to call the Notify member function of a Source pin. And there
should be at least one sink pin connected to the source pin. (The usage of the Notify function will be
covered in details later.) Upstream event occurs, when the Notify function of a sink pin is called, and there
is source pin connected to the sink pin. In some cases one pin can handle both upstream and downstream
for one and the same type of data (OpenWire interface).

Change of State Broadcasting

OpenWire 2 introduces the StatePins. StatePins are using a different mechanism to exchange data (State
information), called Change of State Broadcasting. When two or more StatePins are connected together,
they form a group of pins synchronizing their state. The connection is maintained via hidden objects named
StateDispatchers. When the state of one of the StatePins changes (the pin’s Notify method has been called),
the pin will send notification to each pin listed in the StateDispatcher, allowing them to reflect the change
of state.

OpenWire Stream Interfaces

Each OpenWire pin can implement one or many interfaces. Some of the interfaces are defined by the
OpenWire standard. They are called “Well-known interfaces” or “standard interfaces”. Others can be
defined by the user. Any user can submit an interface to the OpenWire development group and request the
interface to be registered as a “Well-known interface”. Some samples of “Well-known interfaces” include
floating point data exchange interface, integer data exchange interface and some others. The current version
of OpenWire defines only 6 types of “Well-known interfaces”. However this code base is in about to
expand rapidly.

What is an OpenWire interface? The answer is any interface inherited from IOWStream can be
OpenWire interface if it is designed to be used by the pins. Here is the OpenWire definition of IOW Stream:

IOWStream = interface
["{2BFF1BE1-1698-4CFA-A427-9E0801C5B357} "]
end;

11/13/14 32 OpenWire 7.5

It’s just empty interface. The following is the definition of the Floating point (Single)data exchange
interface, as it is defined by OpenWire. This interface is used by any pin capable of receiving Floating
point (Single) data :

IOWBasicStream = interface (IOWStream)
['{561B072C-4191-49C6-9F22-21791EF977D9} "]
function DispatchData (DataTypeID : PDataTypeID; Operation
IOWNotifyOperation; State : TOWNotifyState) : TOWNotifyResult; stdcall;
end;

IOWDataStream = interface (IOWBasicStream)
["{CFDF94D7-5134-49D9-AC65-902BBC1CD140} "]
end;

IOWFloatStream = interface (IOWDataStream)
['{67F6997B-7TER4-4E2F-8320-4A512B5F2BC7} "]
end;

The only necessary function is the one that will receive the data. You can define your own interfaces by
selecting a new GUID and adding functions defined by you.

After creating the interface, you can decide to register a name and default dispatcher for the interface.
We will discuss the dispatchers in detail later. The best place for the registration is the initialization section
of the package file.

WARNING ! The default dispatcher must be available both in Design and Run time. DO NOT
REGISTER THE DISPATCHER IN THE "Register" FUNCTION ! If you do so, the dispatcher will be
available at design time only ! Do it in the initialization section.

Here is a sample of how you can do so in Delphi :

initialization
OWRegisterDefaultHandler (IOWFloatStream,
OWDefaultFloatNotificationHandler);

In C++ Builder you can use the #pragma startup or you can declare a fake global object and do the
registration in the constructor :

#pragma startup MyOWRegistration;
void MyOWRegistration (void)
{
OWRegisterDefaultHandler (IOWFloatStream,
OWDefaultFloatNotificationHandler);

or

class TMyOWRegistrationClass

{

public:

TMyOWRegistrationClass ()
{
OWRegisterDefaultHandler (IOWFloatStream,
OWDefaultFloatNotificationHandler);

}

bi

TMyOWRegistrationClass MyOWRegistration;

11/13/14 33 OpenWire 7.5

Here is a sample of OWDefaultFloatNotificationHandler implementation:

function OWDefaultFloatNotificationHandler (Sender : TOWPin; Handler
IOWStream; DataTypeID : PDataTypeID; Operation : IOWNotifyOperation;
State : TOWNotifyState) : TOWNotifyResult;
var

Interf : IOWFloatStream;

begin
Result := [];
if (Handler.QueryInterface(IOWFloatStream, Interf) = 0) then
Result := Interf.DispatchData(DataTypeID, Operation, State);
end;

The dispatcher (Notifier) just calls the DispatchData method of the interface.

You can use the interface for both Upstream and Downstream. In most cases you will use it for
Downstream only. In this case first you have to declare a pin inherited from TOWSinkPin or one of its
descendants and then to implement the interface in the pin. You can use this interface for State
Broadcasting as well. The OpenWire provides a set of basic pin types to handle some of the “Well-known
interfaces”. Here is how OpenWire has defined the TOWFloatSinkPin pin:

type TOWDispatchEvent = procedure(DataTypeID : PDataTypelD;
Operation : IOWNotifyOperation; CustomData : TObject) of object;

type TOWFloatChangeEvent = procedure(Sender : TOWPin; AValue : Single)
of object;

TOWFloatSinkPin = class(TOWSinkPin, IOWFloatStream)

protected

FCustomData : TObject;
FDispatchEvent : TOWDispatchEvent;
FOnDataChange : TOWFloatChangeEvent;
Fvalue : Single;

public

function DispatchData(DataTypeID : PDataTypelID; Operation
IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; stdcall;

public
constructor CreateEx(AOwner: TComponent; ADispatchEvent

TOWDispatchEvent; ACustomData : TObject = NIL);

constructor Create(AOwner: TComponent; AOnDataChange
TOWFloatChangeEvent; ACustomData : TObject = NIL);

public
property Value : Single read FValue;

end;

Everything that has to be done is implementing the DispatchData function for the IOWFloatStream
interface. Here is the function as it is done in OpenWire:

function TOWFloatSinkPin.DispatchData (DataTypeID : PDataTypelD;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; stdcall;

begin
if (Operation.Instance() is TOWSuppliedSingleOperation) then
begin
FValue := TOWSuppliedSingleOperation(Operation.Instance()).Value;

11/13/14 34 OpenWire 7.5

if (Assigned(FOnDataChange)) then
FOnDataChange (Self, FValue);

end;

if (Assigned(FDispatchEvent)) then
FDispatchEvent (DataTypeID, Operation, FCustomData);

Result := [];
end;

This code is a bit more complex in order to make the pin easier for using. Here is a simplified version of
the same code showing the bare minimum code needed:

function TOWFloatSinkPin.DispatchData (DataTypeID : PDataTypelD;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; stdcall;
begin
if (Assigned(FDispatchEvent)) then
FDispatchEvent (DataTypelID, Operation, FCustomData);

Result := [];
end;

The only code inside is used just to call the FDispatchEvent in case the event is assigned. We will
see a sample of component using this pin type later.

Second you have to define a source pin capable of sending data or events through the interface.
OpenWire defines such pin as follows:

TOWFloatSourcePin = class(TOWSourcePin)

public
constructor Create(AOwner: TComponent);

end;

constructor TOWFloatSourcePin.Create(AOwner: TComponent);
begin

AddType (IOWFloatStream) ;
end;

For simplicity in this example the clocking support is omitted. This is enough. In this case the pin will
use the default notifier (dispatcher) for the IOWFloatStream interface. You can also declare your own
dispatcher:

type TOWFloatPinNotificationEvent = function (Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState
) : TOWNotifyResult of object;

TOWExFloatSourcePin = class (TOWSourcePin)
protected
PinNotificationEvent : TOWFloatPinNotificationEvent;
Fvalue : Single;
public

constructor Create(AOwner: TComponent;
APinNotificationEvent : TOWFloatPinNotificationEvent);

11/13/14 35 OpenWire 7.5

public
function Notification(Handler : IOWStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

end;

constructor TOWExFloatSourcePin.Create(AOwner: TComponent);
begin

AddType (IOWFloatStream, Notification);
end;

The only new function here is the Notification function. As we will see later this function will be
registered to be called for each sink pin connected to the source and registered to be handled through the
IOWPFloatStream interface. Here is how OpenWire implements the function:

function TOWExFloatSourcePin.Notification(Handler : IOWStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;

var

Interf : IOWFloatStream;

begin
Result := [];
if (Handler.QueryInterface (IOWFloatStream, Interf) = 0) then
begin
if(Assigned(PinNotificationEvent)) then
begin
Result := PinNotificationEvent (Interf, DataTypelID, Operation,
State);
Exit;
end;
if (nsNewLink in State) then
begin

Interf.DispatchData (DataTypelD,
TOWSuppliedSingleOperation.Create(FValue), State);

Exit;

end;

Interf.DispatchData(DataTypeID, Operation, State);
end;
end;

In the function the Interf obtains interface of type IOWFloatStream from the Handler and calls the
PinNotificationEvent the event usually points to a handler inside the component using the pin. There most
often you will just call the DispatchData method with the value you want to pass to the sink pin. You will
see sample of how to do that later. If the event is not assigned, then the DispatchData method will be called
directly. If the Notification function has been called because a new connection has been established, the
current FValue is wrapped in a TOWSuppliedSingleOperation object and the DispatchData is called.

Connecting and Handshaking

Handshaking is the process of 2 pins connecting to each other. 2 pins can connect to each other in case
the following conditions are met:

1. One of the pins should be TOWSinkPin or TOW StatePin descendant and the other should be
TOWSourcePin or TOWStatePin descendant.

11/13/14 36 OpenWire 7.5

2. One of the pins should implement an interface, which the other knows how to deal with. (The
interfaces will be covered later.)

3. The two pins should not be in functional dependency of each other — as example if the source pin has
been calculated as result of the sink pin. In this case the source pin can’t connect to the sink pin for an
obvious reason. (Functional dependency will be covered in detail later)

4. In case of a long chain of pins connected in type dependency, the entire chain might be restricted to use
a homogeneous interface. In this relatively rare case all of the pins will have to have at least one
common interface. Otherwise the connection will fail. (The type dependency will be described in
details later.)

In order the two pins to connect to each other one of them should implement an interface the other
knows how to deal with. Here is a sample of pin implementing an interface.

//

// Defining an interface.

IOWSampleStreamInterface = interface (IOWStream)
['{DC6AB530-E1C9-4F6F-AB8B-1242C391CF79}"']
procedure MyFunction (Data : Single); stdcall;

end;

//

// Defining a sink pin implementing IOWSampleStreamInterface.
TOWSampleSinkPin = class(TOWSinkPin, IOWSampleStreamInterface)

public
procedure MyFunction (Data : Single); stdcall;

end;

Next you have to create a pin capable to call functions inside the IOWSampleStreamInterface:

//
// Defining a source pin capable of calling functions
// inside IOWSampleStreamInterface.
TOWSampleSourcePin = class (TOWSourcePin)
public
constructor Create(AOwner: TComponent);

public
function Notification(Handler : IOWStream; Operation
IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; wvirtual;

end;

constructor TOWSampleSourcePin.Create(AOwner: Tcomponent);
begin
inherited;

// Register the Notification function to be called

// for IOWSampleStreamInterface.

AddType (IOWSampleStreamInterface, Notification);
end;

We will cover the implementation of the Notification function later. For now this is enough for both
pins to be able to connect to each other.
One and the same pin can implement multiple interfaces. As example:

//

// Defining the interfaces.

11/13/14 37 OpenWire 7.5

IOWSampleStreamInterfacel = interface (IOWStream)
["{3634EB24-2ADD-49E7-BBF9-870A81BA3192} "]
procedure MyFunctionl (Data : Single); stdcall;

end;

IOWSampleStreamInterface?2 = interface (IOWStream)
['{3D4C0921-B05D-4D6B-A90C-662F8AEG61C97} ']
procedure MyFunction2 (Data : Single); stdcall;

end;

//

// Defining a sink pin implementing IOWSampleStreamInterfacel,
// and IOWSampleStreamInterface 2.

TOWSampleSinkPin = class(TOWSinkPin,
IOWSampleStreamInterfacel, IOWSampleStreamInterface2)

public
procedure MyNotificationFunctionl (Data : Single); stdcall;
procedure MyNotificationFunction2 (Data : Single); stdcall;
end;

You can also register a pin to be able to call functions inside multiple interfaces:

constructor TOWSampleSourcePin.Create(AOwner: Tcomponent);
begin
inherited;

AddType (IOWSampleStreamInterfacel, MyNotificationFunctionl);
AddType (IOWSampleStreamInterface2, MyNotificationFunction2);
end;

In most of the cases the notification function will be different for each of the interfaces, but it is not a
strict rule.

We are saying that two pins are connected when they agree on the interface that they will use to talk to
each other. They can connect in each direction (upstream and downstream) using one and only one
interface per direction. Once connected you can check the connection name in each direction through the
DownStreamLinkName and the UpStreamLinkName properties of the TOWSinkPin. Each direction may
use a different interface.

When connecting the pins, during the handshaking, the pins will negotiate the interface they are in
about to use. The negotiation mechanism is very simple. The last pin type in the list of interfaces added
through the AddType function, which matches one of the interfaces implemented, by the other pin, will be
the pin type used for data exchange. The list of interfaces is always processed from the last to the first. In
case you are testing with the two pins shown above — the result would be IOW SampleStreamInterface2. If
the sink pin didn’t implement the IOWSampleStreamInterface2, then the result would be
IOWSampleStreamlInterfacel. If the last AddType was missing in the constructor for the source
component, the connection would be established through IOWSampleStreamlInterfacel as well. There is
only one exception of that rule and it is in case there are type dependencies inside one of the components.
This case is relatively rare. For most cases you can ignore it completely.

A Sink Pin can be registered to be function and/or type source for a certain source pin. In case the pin is
a function source, it means that the value of the source pin is calculated inside the component from the
value received from the sink pin (the source pin value is function of the sink pin value). In this case the
source pin will not be able to send data to the sink pin, and the connection will be restricted. If the source
pin is connected to a sink pin inside another component and this sink pin is a function source for a source
pin in the other component, this other components source pin will not be able to connect to the sink pin of
the first component for the same reason. This means that the function source restriction is propagated
among the entire chain of sources and sinks. The type dependency is used in rare occasions. If a certain
source pin is capable to connect to sink pins through different interfaces and has a type dependency on one
or more sink pins inside the same component, it will restrict the interfaces it is capable of supporting in
order to make sure the connection will be established using the same type interface through the entire type

11/13/14 38 OpenWire 7.5

chain. It may result in reconnecting already connected sink and source pins in the chain in order to ensure
the homogenous connections. This mechanism can be ignored in most cases.

Standard (Well-known) Interfaces and Standard Pin Types

OpenWire defines a set of standard — called “Well-known” interfaces. The current version of OpenWire
defines only 6 “Well-known interfaces” — IOWIntegerStream, IOWFloatStream, IOWRealStream,
IOWBoolStream, IOWCharStream, [OWStringStream. OpenWire provides ready-to-use pins for those
interfaces. The “Well-known interfaces” is a growing code base of interfaces available for usage by the
developers. Whenever a developer needs to use a pin with certain capabilities — a good idea is to check
whether or not a pin with such capabilities already exists, and if so to use the existing one. If not there
might be a “Well-known interface” which could be used. Only if you can’t find neither ready pin, nor
“Well-known interface”, to satisfy your needs, you should develop your own. How to develop and register
your own interfaces will be covered later. Once developed and tested, if you think the interface could be
used by others to exchange data, you can submit it to the OpenWire development team and if accepted it
will appear in the “Well-known interfaces” code base. Information on how to submit your interfaces will
be available on the OpenWire web site: www.openwire.org .

Clocking

OpenWire 2.1 introduces a standard way of providing clock for any OpenWire pin. The clocking is
design for Downstream and is implemented via standard interface IOWClockStream.
Here is the clocking interface declaration:

IOWClockStream = interface (IOWBasicStream)
["{48CDAF9F-00C7-4B45-999D-4EE25353A952} "]
end;

Here is the declaration, and the implementation of the newly introduced TOWClockSourcePin :

type
TOWClockSourcePin = class(TOWSourcePin)

protected
function ClockNotification(Handler : IOWStream; DataTypeID
PDataTypeID; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

public
procedure Clock();

public
constructor Create (AOwner: TComponent) ;

end;

constructor TOWClockSourcePin.Create (AOwner: TComponent) ;

begin

inherited;

AddType (IOWClockStream, ClockNotification);
end;

procedure TOWClockSourcePin.Clock () ;
begin

Notify(TOWClockOperation.Create());
end;

function TOWClockSourcePin.ClockNotification(Handler : IOWStream;
DataTypeID : PDataTypelID; Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult;

var

11/13/14 39 OpenWire 7.5

http://www.openwire.org/

Interf : IOWClockStream;

begin
Result := [];
if (Handler.QueryInterface(IOWClockStream, Interf) = 0) then

Interf.DispatchData(DataTypeID, Operation, State);

end;

Because in OpenWire version 2.1 and up all the standard source pins are inherited from
TOWClockSourcePin they are naturally capable of providing clock events.

Creating Components Using the Standard Interfaces and Pins

Using the Standard Source and Sink Pins In Your Components

Creating components using the standard already provided by OpenWire pins is very easy. It is matter of
just few lines of code and pin support can be added to any existing component with very little effort. Here
are few examples.

In our first example we will add sink pin support to a TLabel component, making it capable to display
the received data. We will make it support only floating point data for now. (I.E. only IOWFloatStream will
be implemented.)

Here is how we will declare our component inside the interface section in Delphi:

TDemoLabel = class (TLabel)
protected
FInputPin: TOWFloatSinkPin;

protected
procedure PinValueChange (Sender : TOWPin; AValue : Single);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property InputPin : TOWFloatSinkPin read FInputPin write
FInputPin;
end;

So the first thing we should do is to declare member variable FInputPin as TOWFloatSinkPin. Then we
will declare a property to use this variable. Finally we will add the PinValueChange procedure. That is all
you have to do in the declaration! As easy as adding a new property, right? But may be the catch is in the
implementation then? Probably there is a whole bunch of code to be added there! Let’s see the
implementation of the constructor, the destructor and the PinValueChange procedure:

constructor TDemoLabel.Create (AOwner: TComponent) ;
begin

inherited;

FInputPin := TOWFloatSinkPin.Create(Self, PinValueChange);
end;

destructor TDemoLabel.Destroy;
begin

FInputPin.Free;

inherited;

11/13/14 40 OpenWire 7.5

end;

procedure TDemoLabel.PinValueChange(Sender : TOWPin; AValue : Single);
begin

Caption := FloatToStr(AValue);
end;

Our first component using OpenWire is ready! Let’s take a look at each of the functions:

The constructor just creates a new pin, passing pointer to the component and the object address
(__closure) of the PinValueChange procedure.

The destructor just deletes the pin.

The PinValueChange procedure is the most important one. This function actually receives the data from
the pin and shows it in the TLabel caption.

Congratulations! You just learned how to create components having sink pins, using the already existed
pins in OpenWire. You will learn how to implement your own pins later. Now let’s see how difficult it is to
create a component which provides data — i.e. has source pin.

To show how to use source pins inside component, we will create a timer component using
TOWFloatSourcePin, and being able to connect and stream data to our TDemoLabel. First we will make
the component being able to connect with the TLabel, then we will implement some real functionality
inside — LE. will make the component generate some increasing numbers from 1 — 100 with step 0.5. Then
we will test the components together and see the data displayed inside our TDemoLabel.

Here is the code necessary to create and support the source pin. Indeed it looks almost the same as for
the sink pin.

// TDemoTimer - basic version.
TDemoTimer = class (TTimer)
protected
FOutputPin : TOWFloatSourcePin;
public

constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property OutputPin : TOWFloatSourcePin read FOutputPin write
FOutputPin;
end;

So as in our first sample, first we add member variable FOutputPin of type TOWFloatSourcePin. Then
add a property to access the variable. Finally add the FloatPinNotification method.
Now let’s focus on the implementation.

constructor TDemoTimer.Create (AOwner: TComponent) ;
begin

inherited;

FOutputPin := TOWFloatSourcePin.Create(Self);
end;

destructor TDemoTimer.Destroy;
begin

FOutputPin.Free;

inherited;
end;

11/13/14 41 OpenWire 7.5

That is all you need to do, in order to have a Source pin inside your component. Easy right? Now you
can compile and place your two components on any form and connect them together. You can even drop
multiple TDemoLabel components and connect all of them to your TDemoTimer. There is only one thing
left to do. We have everything we need to connect the components, but we don’t send any data. You have
seen how easy was everything up to now, so it will be no surprise to learn that the only thing you need is
one line of code:

FOutputPin.Value = FCounter;

In this case FCounter is a variable of type Single (floating point). The right place to put the Notify
function obviously is inside OnTimer event or the Timer member procedure of the TTimer. Before we
continue with the pins, we will have to say few words about the Delphi / C++ Builder TTimer component
itself. There are few little details in the way the TTimer works. We don’t want to use the OnTimer, because
somebody may decide to assign another procedure to it. The obvious choice is the Timer member
procedure. There is a hidden problem however. Borland optimized the timer to call the Timer procedure
only if an OnTimer event is assigned. Whether bug or a feature this will make our lives more difficult. We
will see a work around the problem just after we review the code to support the pins. So for now let’s focus
on the Timer procedure:

procedure TDemoTimer.Timer;

begin
FOutputPin.Value := FCounter;
FCounter := FCounter + 0.5;

if (FCounter > 100) then
FCounter := 0;

inherited Timer;
end;

If it were not for the TTimer “feature” mentioned above we would have been almost done. The only
thing left to be done would be just adding FCounter as a member variable to our class and assigning it to 1
in the constructor. Although it is out of the OpenWire topic we will show the necessary code to complete
the TTimer:

TDemoTimer = class (TTimer)
protected
FOutputPin : TOWFloatSourcePin;
FCounter : Single;
protected

procedure Timer; override;
procedure Loaded; override;

procedure STestClockComponentTimer (Sender : TObject);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property OutputPin : TOWFloatSourcePin read FOutputPin write
FOutputPin;
end;

implementation
constructor TDemoTimer.Create (AOwner: TComponent) ;

begin
inherited;

11/13/14 42 OpenWire 7.5

FOutput := TOWFloatSourcePin.Create(Self);

FCounter := 1;

FOutputPin.Value := 1; // Let’s make the pin value the same as
FCounter.
end;

destructor TDemoTimer.Destroy;
begin

FOutputPin.Free;

inherited;
end;

procedure TDemoTimer.Loaded;

begin
if((not Assigned(OnTimer)) and
(not (csDesigning in ComponentState))) then
OnTimer := STestClockComponentTimer;
end;

procedure TDemoTimer.Timer;

begin
FOutputPin.Value := FCounter;
FCounter := FCounter + 0.5;

if (FCounter > 100) then
FCounter := 0;

inherited Timer;
end;

procedure TDemoTimer.STestClockComponentTimer (Sender : TObject);
begin
end;

The Loaded and the STestClockComponentTimer empty procedures have nothing to do with the
OpenWire or our pins. They have been added just to work around the Borlands TTimer “feature”. However
now our component is completed and can be tested.

Congratulations! You have created your first two components using OpenWire. Now they can be placed
on a form or TDtataModule and connected to each other and they will start exchanging data.

Using the Standard State Pins In Your Components

OpenWire 2 introduces a new type of pins — the State Pins. They are designed to allow multiple
components to share a common state — Enabled/Disabled, Up/Down etc. Those pins are using a mechanism
known as “Change of State Broadcasting”. You can use the standard interfaces with state pins. OpenWire
also provides some ready to use pins implementing the standard interfaces(data types).

In our example we will implement a TTrackBar descendant component using the standard

TOWIntegerStatePin.
Here is how we will declare our component inside the interface section in Delphi:
TDemoTrackBar = class(TTrackBar)
protected

FPositionPin : TOWIntegerStatePin;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

11/13/14 43 OpenWire 7.5

protected
procedure Changed; override;

protected
procedure OnlIntegerChangeEvent (Sender : TOWPin; AValue : Integer);

published
property PositionPin : TOWIntegerStatePin read FPositionPin write

FPositionPin;

end;

The first thing we should do is to declare member variable FPositionPin as TOWIntegerStatePin. Then
we will declare a property to use this variable. Then we will add the OnIntegerChangeEvent procedure.
Finally we will override the Changed procedure in order to notify the pin about the changes in the
component state. That is all you have to do in the declaration. Here is the implementation of the
constructor, the destructor, the OnIntegerChangeEvent procedure, and the Changed procedure:

constructor TDemoTrackBar.Create (AOwner: TComponent) ;
begin

inherited;

FPositionPin := TOWIntegerStatePin.Create(Self,
OnIntegerChangeEvent);

end;

destructor TDemoTrackBar.Destroy;
begin

FPositionPin.Free () ;

inherited;
end;

procedure TDemoTrackBar.OnIntegerChangeEvent (Sender : TOWPin; AValue
Integer);
begin
Position := AValue;
end;

procedure TDemoTrackBar.Changed;
begin

inherited;

FPositionPin.Value := Position;
end;

This is all, the component needs in order to support StatePins.

The constructor just creates a new State Pin, passing pointer to the component and the object address
(__closure) of the OnIntegerChangeEvent procedure.

The destructor just deletes the pin.

The OnlntegerChangeEvent procedure is the most important one. This function actually receives the
data from the pin and assigns the Value to the TrackBar’s Position.

Finally inside the Changed procedure when a change of the position occurs, the FpositionPin gets
notified, by assigning the Position to the FPositionPin.Value.

11/13/14 44 OpenWire 7.5

How the Notify Really Works

Looking at the above components it’s kind of difficult to understand how the Notify will send the data
to the TDemoLabel component as example. Here is how it works. Remember those AddType procedures
we were discussing before? That is where the magic is. [OWFloatStream inherits from IOWDataStream.
Here is the code for the default dispatcher for the IOWDataStream as it is implemented in OpenWire:

function OWDefaultDataNotificationHandler (Sender : TOWPin; Handler
IOWStream; DataTypelID : PDataTypelID; Operation : IOWNotifyOperation;
State : TOWNotifyState) : TOWNotifyResult;
var

Interf : IOWDataStream;

begin
Result := [];
if (Handler.QueryInterface(IOWDataStream, Interf) = 0) then
Result := Interf.DispatchData(DataTypeID, Operation, State);
end;

This dispatcher will be called when a pin connected to another pin implementing IOWDataStream
interface attempts to send data, and it has not registered its own dispatcher. In case the Source Pin sending
the data has its own dispatcher, the default one will not be used. Here is a sample of the timer component
using its own dispatcher:

TDemoTimer = class (TTimer)
protected
FOutput : TOWExFloatSourcePin;
FCounter : Single;
protected

procedure Timer; override;
procedure Loaded; override;

procedure STestClockComponentTimer (Sender : TObject);

protected
function FloatPinNotification(Handler : IOWFloatStream; Operation
IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
public

constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Output : TOWExFloatSourcePin read FOutput write FOutput;

end;

constructor TDemoTimer.Create (AOwner: TComponent) ;

begin
inherited;
FOutput := TOWExFloatSourcePin.Create(Self, FloatPinNotification);
FCounter := 1;
end;
function TDemoTimer.FloatPinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
begin
Result := [];

if (Operation.Instance() is TOWSuppliedOperation) then

11/13/14 45 OpenWire 7.5

Result := Handler.DispatchData(DataTypeID, Operation, State);

end;

Let’s look at the code for the TOWExFloatSourcePin constructor and the Notification function:

constructor TOWExFloatSourcePin.Create(AOwner: TComponent;
APinNotificationEvent : TOWFloatPinNotificationEvent);

begin
inherited Create(AOwner);
PinNotificationEvent := APinNotificationEvent;

AddType (IOWFloatStream, Notification);

end;

function TOWExFloatSourcePin.Notification(Handler : IOWStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;

var

Interf : IOWFloatStream;

begin
if (Assigned(PinNotificationEvent)) then
if (Handler.QueryInterface (IOWFloatStream, Interf) = 0) then
begin
Result := PinNotificationEvent(Interf, Operation, State);
Exit;
end;
Result := [];
end;

The AddType defines that when you call Notify for the Source pin, for any Sink pin implementing the
IOWFloatStream a function named Notification should be called. The Notification function itself, calls
PinNotificationEvent, and as you remember, we passed our component PinNotification as a parameter to
the pin constructor, which assigns it to the PinNotificationEvent. So in other words for each sink pin
implementing the IOWFloatStream interface the FloatPinNotification will be called. So if we have two
TDemoLabel components connected to our TDemoTimer, and we call the Notify function, for each of them
OpenWire will call FloatPinNotification, passing the IOWFloatStream interface to their sink pin as
argument. This type of event is called Downstream event. In this case the Notify command has been called
for the Source pin. If the IOWFloatStream was implemented for the source pin and the sink pin had
registered by AddType function handlers to send data to the IOWFloatStream interface, then the pins
would be capable of Upstream events, and you would be able to use Notify inside the Sink pin. The only
difference is that in this case the event gets send to only one pin — the source pin, so far only one source pin
can be connected to a sink pin. The IOWFloatStream is not designed for upstream events, and although
they are possible to implement, they would have no value. There are however some interfaces in which
upstream events are not only meaningful, but also necessary for the proper behavior of the interface.

There are some other ways of implementing source pin notification than the implementation shown
above.

Let see again the FloatPinNotification handler:

function TDemoTimer.FloatPinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
begin

Result := [];
if (Operation.Instance () is TOWSuppliedOperation) then

Result := Handler.DispatchData(DataTypeID, Operation, State);

end;

11/13/14 46 OpenWire 7.5

The Operation parameter is used to pass notification objects Down or Upstream. There are many
notification objects, which could be send, and they depend on the particular interface. The most important
one for floating point data is TOWSuppliedOperation. This object contains the data to be sent to the sink
pins. The “if” statement checks if a new data has been sent LE. if Operation is a TOW SuppliedOperation.
The State parameter can be used to determine if the notification is called because a new connection is
established to the Sink Pin. In this case State will contain nsNewLink and by checking for it you can add
some code to handle this condition. Another valuable information received through the State is the
nsLastlteration state. It gets send when the FloatPinNotification is called for the last pin in the list of pins
connected to the source. It allows a performance optimizations to be done in this case. As example after
this moment the Data will not be needed and can be changed or released. This feature is very valuable for
ultra fast data processing application, but the topic goes beyond the scope of this document. The state plays
some role for the dynamic order balancing as well, resulting in further speed improvements. The dynamic
order balancing will be covered later.

Because we know that from the pin we always will send the FCounter we can simplify our design and
also get the benefit of the nsNewLink state notification. Our new FloatPinNotification will look like this:

function TDemoTimer.FloatPinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
begin

Result := Handler.DispatchData (DataTypelD,

TOWRequestedSingleOperation.Create (Fcounter), State);

end;

and then our Notify function will not use the passed parameters and we can replace it with:

FOutput.Notify(IOWNotifyOperation.Create());

Then our timer function will be:

procedure TDemoTimer.Timer;

begin
FOutput.Notify(IOWNotifyOperation.Create());
FCounter := FCounter + 0.5;

if (FCounter > 100) then
FCounter := 1;

inherited Timer;
end;

This approach is much simpler and was used often in OpenWire 1. OpenWire 2 introduced improved
messaging system, and easier pin synchronization. This method is rarely needed in OpenWire 2.

Whenever you are satisfied with the default dispatcher for the data type, you should use it. The code of
your components will be much smaller, and easier to understand.

When State pins and State Dispatchers are involved, the scenario is similar. One of the State pins will
send a Notify Message Object. The Message Object will be delivered by the default or custom Notify
Dispatchers to all the pins connected to the State Dispatcher. The code is almost identical to the code
above.

Creating And Using Pins Implementing The Standard Interfaces

Now after we learned how to use the standard pins provided by OpenWire, it is time to try to create our
own pins, capable of supporting multiple interfaces. Then we will modify the components from the last
sample to use the just created pins.

11/13/14 47 OpenWire 7.5

We will start our work with a sink pin, and as a first step will make it accepting only one type of data
(one interface) — the IOWFloatStream interface. Then we will add another interface. Here is how you
declare a new pin implementing certain interface:

// Event type declaration
type TOWDemoFloatChangeEvent = procedure(Sender : TOWPin; AValue
Single) of object;

// Pin declaration
TOWDemoSinkPin = class(TOWSinkPin, IOWFloatStream)

Protected
FOnDataChange : TOWDemoFloatChangeEvent;
FValue : Single;
public
function DispatchData (DataTypeID : PDataTypeID; Operation
IOWNotifyOperation; State : TOWNotifyState) : TOWNotifyResult; stdcall;
public

constructor Create(AOwner: TComponent; AOnDataChange
TOWDemoFloatChangeEvent) ;

end;

Now we will write the code for the constructor and the DispatchData method.

constructor TOWDemoSinkPin.Create(AOwner: TComponent; AOnDataChange
TOWFloatChangeEvent);

begin
inherited Create(AOwner);
FOnDataChange := AOnDataChange;
end;

function TOWDemoSinkPin.DispatchData (DataTypeID : PDataTypelD;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; stdcall;

begin
if(Operation.Instance() is TOWSuppliedSingleOperation) then
begin
FValue := TOWSuppliedSingleOperation(Operation.Instance()) .Value;
if (Assigned(FOnDataChange)) then
FOnDataChange (Self, FValue);
end;
Result := [];
end;

Our pin is ready to go. We can replace the TOWFloatSinkPin in out TLabel with TOWDemoSinkPin
and the TLabel will still work the way it was before. But before we do that let see how difficult it is to add
support for integer data to the same pin.

// Event type declarations
type TOWDemoFloatChangeEvent = procedure(Sender : TOWPin; AValue
Single) of object;

// Pin declaration
TOWDemoSinkPin = class(TOWSinkPin, IOWFloatStream, IOWIntegerStream)

protected

11/13/14 48 OpenWire 7.5

FOnFloatDataChange : TOWDemoFloatChangeEvent

FValue : Single;
public
function DispatchData(DataTypeID : PDataTypelID; Operation
IOWNotifyOperation; State : TOWNotifyState) : TOWNotifyResult; stdcall;
public

constructor Create(AOwner: TComponent;
AOnFloatDataChange : TOWDemoFloatChangeEvent);

end;

Here is how you would implement the constructor and the SendIntegerData method:

constructor TOWDemoSinkPin.Create(AOwner: TComponent;
AOnFloatDataChange : TOWDemoFloatChangeEvent);

begin
inherited Create(AOwner);
FOnFloatDataChange := AOnFloatDataChange;
end;

function TOWDemoSinkPin.DispatchData (DataTypeID : PDataTypelD;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; stdcall;

begin
if (Operation.Instance () is TOWSuppliedSingleOperation) then
begin
FValue := TOWSuppliedSingleOperation(Operation.Instance ()).Value;

if (Assigned (FOnFloatDataChange)) then
FOnFloatDataChange (Self, FValue);

end

else 1if (Operation.Instance() is TOWSuppliedIntegerOperation) then
begin
FValue := TOWSuppliedIntegerOperation(Operation.Instance()) .Value;

if (Assigned (FOnFloatDataChange)) then
FOnFloatDataChange (Self, FValue);

end;

Result := [];
end;

Please note that the suggested mechanism differs than the one suggested in OpenWire 1. This one is
much cleaner and easier to use. Let see now our TLabel using the new pin.

TDemoLabel = class (TLabel)
protected
FInput : TOWDemoSinkPin;

protected
procedure OnDataChangedEvent (Sender : TOWPin; AValue : Single);

public
constructor Create (AOwner: TComponent); override;

destructor Destroy; override;

published

11/13/14 49 OpenWire 7.5

property Input : TOWDemoSinkPin read FInput write FInput;
end;

constructor TDemolabel.Create (AOwner: TComponent) ;
begin
inherited;
FInput := TOWDemoSinkPin.Create(Self, OnDataChangedEvent);

end;

destructor TDemoLabel.Destroy;
begin

FInput.Free;

inherited;
end;

procedure TDemoLabel.OnDataChangedEvent (Sender : TOWPin; AValue : Single
) ;
begin
Caption := FloatToStr(Data);
end;

Now our component can accept both single (floating point) and integer data, through different
interfaces. Please notice that the code is much shorter than in OpenWire 1. Just few lines of code and we
have added new power to our component. Now you can compile and test the just created component
together with the already existed TDemoTimer component. They should work together without any
problems.

Now it’s time to create a source pin capable of sending 2 different types of data. Then we will use our
timer component to test the pin.

As first step we will make the pin supporting only floating point data. Then we will add Integer data
support as well. Here is how we will declare the pin:

TOWDemoSourcePin = class (TOWSourcePin)
protected
FValue : Single;
protected

function Notification(Handler : IOWStream; DataTypeID
PDataTypeID; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

protected
procedure SetValue(AValue : Single);

public
constructor Create(AOwner: TComponent);

public
property Value : Single read FValue write SetValue;

end;

Please notice that the code is different than the one suggested in the OpenWire 1. Here is the
implementation for the constructor and the FloatNotification function:

constructor TOWDemoSourcePin.Create(AOwner: TComponent) ;
begin

inherited Create(AOwner);

AddType (IOWFloatStream, Notification);
end;

11/13/14 50 OpenWire 7.5

procedure TOWDemoSourcePin.SetValue(AValue : Single);

begin
if (FValue <> AValue) then

begin

FVvalue := AValue;

Notify (TOWSuppliedSingleOperation.Create(FValue));

end;
end;
function TOWDemoSourcePin.Notification(Handler : IOWStream;
DataTypeID : PDataTypeID; Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult;
var

Interf : IOWFloatStream;

begin
Result := [];
if (Handler.QueryInterface (IOWFloatStream, Interf) = 0) then
begin
if (nsNewLink in State) then

begin

Interf.DispatchData (DataTypelD,
TOWSuppliedSingleOperation.Create(Value), State);

Exit;

end;

Interf.DispatchData(DataTypeID, Operation, State);
end;

end;

With the AddType call in the constructor, we are registering the Notification to be called for the
floating-point data interface the pin will call the Notification function.

The SetValue procedure is added to simplify the usage of the pin. It will check if the current value of
the pin differs than the new one assigned to the Value property, and if so will send a notification with the
new value.

The Notification first attempts to obtain an IOWFloatStream interface to the Handler it receives from
OpenWire. If it succeeds it checks to see if the notification is because a new connection has been
established. If so it sends the current pin FValue to the connected Sink Pin via the IOWFloatStream
interface. Otherwise it sends whatever Operation has been received by the Notify function as a Operation
parameter to the connected Sink Pin via the IOWFloatStream interface. You can add this pin to your
TDemoTimer component, and test it, but before doing that, we will add Integer interface to the pin.

First we will add a new data type to the pin:

TOWDemoSourcePin = class (TOWSourcePin)
protected
FValue : Single;
protected

function NotificationFloat (Handler : IOWStream; DataTypeID
PDataTypelID; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

function NotificationInteger (Handler : IOWStream; DataTypeID
PDataTypelID; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

11/13/14 51 OpenWire 7.5

protected
procedure SetValue(AValue : Single);

public
constructor Create(AOwner: TComponent);

public
property Value : Single read FValue write SetValue;

end;

And now the implementation:

constructor TOWDemoSourcePin.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
AddType (IOWIntegerStream, NotificationInteger);
AddType (IOWFloatStream, NotificationFloat);

end;

function TOWDemoSourcePin.NotificationFloat (Handler : IOWStream;
DataTypeID : PDataTypelID; Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult;

var

Interf : IOWFloatStream;

begin
Result := [];
if (Handler.QueryInterface(IOWFloatStream, Interf) = 0) then
begin
if (nsNewLink in State) then
begin
Interf.DispatchData (DataTypelD,
TOWSuppliedSingleOperation.Create(Value), State);
Exit;
end;

Interf.DispatchData(DataTypeID, Operation, State);

end;
end;
function TOWFloatIntSourcePin.NotificationInteger (Handler : IOWStream;
DataTypeID : PDataTypeID; Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult;
var

Interf : IOWIntegerStream;

begin
Result := [];
if (Handler.QueryInterface(IOWIntegerStream,Interf) = 0) then
begin
if (nsNewLink in State) then

begin

Interf.DispatchData (DataTypelD,
TOWSuppliedIntegerOperation.Create(Round(Value)), State);

Exit;

end;

Result := Interf.DispatchData(DataTypeID, Operation, State)

11/13/14 52 OpenWire 7.5

end;

end;

Notice the order of the AddType function calls. We first call AddType for Integer data, then for the
floating point data. This means that the pin first will try to connect using the floating-point interface, and if
it can’t then it will try the integer format. The pin always will try to connect to the type registered last.

WARNING ! In the previous versions of OpenWire the registration was in reverse. The connection was
established based on the first registered type, rather than on the last one. This is proved to be a wrong
concept and was changed. Please update your code if necessary.

You can use one and the same Notification function for both formats, but that leads to a lot of bugs and
is considered a very bad practice. It will not save any code, instead it will not allow the pin to participate in
type dependencies. Even worse, in case you decide to create type dependency, the pin will use a wrong
interface. Always use separated function handlers for each data format (interface).

Now it’s time to test our pin with the TDemoTimer component we created before. Here is what you
should change in the component:

TDemoTimer = class (TTimer)
protected
FOutput : TOWExDemoSourcePin;
FCounter : Single;
protected

procedure Timer; override;
procedure Loaded; override;

procedure STestClockComponentTimer (Sender : TObject);
public
constructor Create (AOwner: TComponent); override;

destructor Destroy; override;

published
property Output : TOWExDemoSourcePin read FOutput write FOutput;

end;

constructor TDemoTimer.Create (AOwner: TComponent) ;

begin
inherited;
FOutput := TOWExDemoSourcePin.Create(Self);
FCounter := 1;
FOutput.Value := 1;
end;

The component is ready and can stream 2 different types of data. You can compile the component and
test it with the TDemoLabel. If everything is fine, they will use the floating-point interface. You can easily
test the integer interface, by either removing the AddType line for the floating-point interface, or by
changing the AddType order.

Congratulations! You have just created your first pins of your own and implemented multiple data type
support inside them. Now the only thing left to learn for you about the pins is how to define your own types
of data (interfaces).

Defining Your Own Interfaces (Types Of Data)

To define new data type for OpenWire, you need to define a new interface descend from IOW Stream.
You should consider defining a new data type only in case there is no one available in the list of “Well-

11/13/14 53 OpenWire 7.5

known interfaces”. Defining a new interface means that no other components will be able to connect to
your pins, unless you provide the interface to other developers one way or another. OpenWire provides a
set of “Well-known interfaces”, but there are cases when you have to handle your own special type of data
format. Then your only option is developing interface of your own. The first step is to select a name for the
new interface. OpenWire recommends that all the interface names should start with IOW.... Second, you
should create a new GUID for your interface. The GUID is the way OpenWire to distinguish the different
interface, so it should be unique. Delphi and C++ Builder both are capable of generating unique GUIDs for
you. Just press Ctrl+Shift+G in the editor, and they will generate a new GUID and will place it in the code.
So here is a sample of a new OpenWire interface defining a new data type:

type IOWDemoStream = interface (IOWStream)
['{57C4D24C-66B6-419E-9319-1047C6B834CC} ']
end;

The just defined interface is ready to be used, but there is no real functionality in it. You can use it to
test a pin, but you have no way to supply any data through it. For the purpose of the sample we will assume
that your data is a special record type. As example:

type TMyData = record

Data : Pointer;
Count : Integer;
end;

We need a mechanism to pass this data type through the just created interface. In order to do so, we
need to add only one function or procedure to our interface:

type IOWDemoStream = interface (IOWStream)
['{57C4D24C-66B6-419E-9319-1047C6B834CC} "]
procedure SendMyData(Data : TMyData); stdcall;
end;

In most cases this function should be more than enough for our interface to operate under OpenWire.
You can add any other functions you think you need to control the stream, synchronize the components,
notify for conditions or whatever you think is necessary to support your data. However the more functions
you add, the more support code will be necessary for each component to deal with your data. If there is not
real necessity to add more functions restrict yourself to just one. OpenWire 2 introduces the Operation
objects used to send command Upstream or Downstream. You can use the Operation object inside your
interface.

Here is a sample:

type IOWDemoStream = interface (IOWStream)
['{57C4D24C-66B6-419E-9319-1047C6B834CC} ']
function SendMyDataByOperation (Operation : IOWNotifyOperation)
TOWNotifyResult; stdcall;
end;

In this case the Operation will be used to pass a control message along with the data. It’s up to you to
define new Notify Operation objects and how they will be used. However when releasing the interface to
other developers, you should give them description of those objects and probably some samples on how to
use them. Otherwise they will be unable to use your interface. The same is true for the TMyData record.

Here is a sample of a Notify Operation class declaration:

TOWSuppliedMyDataOperation = class(TOWSuppliedOperation)
public
Value : TMyData;

public
constructor Create(AValue : TMyData);

end;

The constructor will just initialize the Value member variable.

11/13/14 54 OpenWire 7.5

After defining the interface, you can (And should!) register it inside the unit Register section by using
the OWRegisterStream procedure. Here is a sample how to do that:

procedure Register;
begin

OWRegisterStream(IOWDemoStream, 'My demo stream');
end;

By doing that, you are assigning a string name for this type of data. All the property editors and experts
now will know how to display information about your data type, and it will be much easier to work with
them. This registration is not a requirement, but is very important.

It's highly recommended that you register a default data dispatcher for your new data type. It will make
it much easier for the users of your interface to develop pins supporting it.

function OWDefaultDemoStreamNotificationHandler (Sender : TOWPin;
Handler : IOWStream; DataTypelID : PDataTypelD; Operation
IOWNotifyOperation; State : TOWNotifyState) : TOWNotifyResult;
begin
if(Operation.Instance () is TOWSuppliedMyDataOperation) then
(Handler as IOWDemoStream) .SendMyData (TOWSuppliedMyDataOperation (
Operation.Instance()) .Value);

Result := [];
end;

initialization
OWRegisterDefaultHandler (IOWDemoStream,
OWDefaultDemoStreamNotificationHandler);

In case you are using the second version of the interface as we discussed it earlier, the dispatcher will
look like:

function OWDefaultDemoStreamNotificationHandler (Sender : TOWPin;
Handler : IOWStream; DataTypeID : PDataTypeID; Operation

IOWNotifyOperation; State : TOWNotifyState) : TOWNotifyResult;
begin
Result := Handler.SendMyDataByOperation(Operation);
end;
initialization

OWRegisterDefaultHandler (IOWDemoStream,
OWDefaultDemoStreamNotificationHandler);

This default dispatcher assumes that you will send the data by calling the Notify method of the pin
passing a TOW SuppliedMyDataOperation object:

‘APin.Notify(TOWSuppliedMyDataOperation.Create (MyData));

Any component which doesn't do so should register it's own notify dispatcher.

That is all you have to do in order to have a new OpenWire data type (interface).

Creating A Pin Implementing Your Interface

Now it’s time to create a pin using the newly created interface. For that purpose we will use the
following interface:

type TMyData = record
Data : Single;
end;

11/13/14 55 OpenWire 7.5

type IOWDemoStream = interface (IOWStream)
['{57C4D24C-66B6-419E-9319-1047C6B834CC} "]
procedure SendMyData(Data : TMyData); stdcall;
end;

We will declare our own Supplied object:

TOWSuppliedMyDataOperation = class(TOWSuppliedOperation)
public
Value : TMyData;

public
constructor Create(AValue : TMyData);

end;

constructor TOWSuppliedMyDataOperation.Create(AValue : TMyData);

begin
inherited Create();
Value := AValue;
end

The TMyData is somewhat useless, but is good enough to demonstrate our sample. Here is a sink pin
implementing the new interface:

// Event type declaration
type TOWDemoSendEvent = procedure (Data : TMyData) of object;

// Pin declaration
TOWDemoSinkPin = class(TOWSinkPin, IOWDemoStream)
protected
SendMyDataEvent : TOWDemoSendEvent;

public
procedure SendMyData(Data : TMyData); stdcall;

public
constructor Create(AOwner: TComponent;

ASendMyDataEvent : TOWDemoSendEvent);

end;

Now we will create the constructor, and the SendMyData method:

constructor TOWDemoSinkPin.Create(AOwner: TComponent;
ASendMyDataEvent : TOWDemoSendEvent);

begin
inherited Create(AOwner);
SendMyDataEvent := ASendMyDataEvent;
end;

procedure TOWDemoSinkPin.SendMyData (Data : TMyData);

begin
if (Assigned(SendMyDataEvent)) then
SendMyDataEvent (Data);
end;

The pin is ready. Now here is a version of our TDemoLabel using the newly created pin:

TDemoLabel = class (TLabel)
protected
FInput : TOWDemoSinkPin;

11/13/14 56 OpenWire 7.5

protected
procedure SendMylLabelData (MyData : TMyData);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Input : TOWDemoSinkPin read FInput write FInput;
end;

constructor TDemoLabel.Create (AOwner: TComponent) ;
begin

inherited;

FInput := TOWDemoSinkPin.Create(Self, SendMyLabelData);
end;

destructor TDemoLabel.Destroy;
begin

FInput.Free;

inherited;
end;

procedure TDemoLabel.SendMyLabelData (MyData : TMyData);
begin

Caption := FloatToStr(MyData.Data);
end;

The only noticeable difference is the SendMyLabelData function. The function just assigns the proper
value to the caption.

Creating A Pin Capable Of Sending Data Through your Interface

Now we can start working on our source pin, and make it capable of sending data through our interface.
Here is our pin:

TOWDemoSourcePin = class (TOWSourcePin)
protected
FvValue : Single;

protected
procedure SetSingle(AValue : Single);

public
function Notification(Handler : IOWStream; DataTypelID
PDataTypelID; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

public
constructor Create(AOwner: TComponent);

public
property Value : Single read FValue write SetSingle;

end;

Here is the implementation for the constructor, the Notification, and the SetSingle function:

constructor TOWDemoSourcePin.Create(AOwner: TComponent);
begin

11/13/14 57 OpenWire 7.5

inherited Create(AOwner);
AddType (IOWDemoStream, Notification);

end;

function TOWDemoSourcePin.Notification(Handler : IOWStream;
DataTypeID : PDataTypelID; Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult;

var

Interf : IOWDemoStream;
MyData : TMyData;

begin
Result := [];
if (Handler.QueryInterface (IOWDemoStream, Interf) = 0) then
begin
if (nsNewLink in State) then
begin
MyData.Data := FValue;
Interf.SendMyData (MyData);
Exit;
end;

if(Operation.Instance() is TOWSuppliedMyDataOperation) then

Interf.SendMyData (TOWSuppliedMyDataOperation(Operation.Instance()) .Va
lue);
end;
end;
procedure TOWDemoSourcePin.SetSingle(AValue : Single);
var

MyData : TMyData;

begin
if (FValue <> AValue) then
begin
Fvalue := AValue;
MyData.Data := AValue;
Notify(TOWSuppliedMyDataOperation.Create(MyData));
end;
end;

There is nothing new in this implementation, so we will move to our final step, which will be — creating
a component to test our new source pin. Here is the changed version of TDemoTimer:

TDemoTimer = class (TTimer)

protected
FOutput : TOWDemoSourcePin;
FCounter : Single;
protected

procedure Timer; override;
procedure Loaded; override;

procedure STestClockComponentTimer (Sender : TObject);

11/13/14 58 OpenWire 7.5

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Output : TOWDemoSourcePin read FOutput write FOutput;

end;

constructor TDemoTimer.Create (AOwner: TComponent) ;

begin
inherited;
FOutput := TOWDemoSourcePin.Create(Self);
FCounter := 1;
FOutput.Value := 1;
end;

procedure TDemoTimer.Timer;
var
MyData : TMyData;

begin
MyData.Data := FCounter;
FOutput.Value := FCounter;
FCounter := FCounter + 0.5;

if (FCounter > 100) then
FCounter := 1;

inherited Timer;
end;

There is nothing special here and the implementation doesn’t differ much than what we have already
seen. By assigning a new value to FOutput.Value we invoke the SetValue procedure. SetValue will call
Notify with a new TOWSuppliedMyDataOperation object and will pass the new data. If there are any Sink
Pins connected, the Notification will be invoked for each of them, and will pass the data to the
SendMyData procedure.

This was the last and by far the most complex development of pins we are in about to cover here. You
can also make the pin to accept some other types of data, but this topic was covered already.

Registering Your Interface As a Standard One

You can register your interface as a “Well-known interface”. Information how to register your interface,
will be posted on the OpenWire’s web site at www.openwire.org.

Function Dependencies

Very often the result of a source pin is calculated based on one or more sink pins. As example if you
have a filter, the output is some function of the input. Obviously it’s not possible to connect the output to
the input. OpenWire provides a standard way of describing such a relationship. The mechanism is called
registering a function source. The source pins have a function called FunctionSources.Add for this purpose.
Here is a sample how you can use this function:

constructor TSTestComponent.Create (AOwner: TComponent) ;

begin
inherited;
FInput := TTestSinkPin.Create(Self, UpdateData, PinNotification);
FOutput := TTestSourcePin.Create(Self, UpdateData, PinNotification);

FOutput.FunctionSources.Add(FInput);

11/13/14 59 OpenWire 7.5

http://www.openwire.org/

end;

In this case the FOutput depends on FInput and OpenWire will not allow them to connected to each
other, neither will it allow the end of a chain of connected function sources to be connected with its
beginning.

Type Dependencies

If you have a component with a sink and a source pin, and both pins can work with multiple types of
data, you may want to force the output (the source pin) to use the same type of data, as the input (the sink
pin). In this case you are trying to establish type source for the source pin (the output). You can use the
DataTypeSources.Add function for this purpose.

Here is a sample, how you can do that:

constructor TSTestComponent.Create (AOwner: TComponent) ;

begin
inherited;
FInput := TTestSinkPin.Create(Self, UpdateData, PinNotification);
FOutput := TTestSourcePin.Create(Self, UpdateData, PinNotification);

FOutput.DataTypeSource.Add(FInput);

end;

In this case OpenWire will connect the sink pin and the source pin to other components only if both
connections can use the same interface (data type). This functionality ensures that the entire chain of data
will be homogeneous. LE. all the pins in the chain will exchange the same type of data.

Dynamic Streaming Order Balancing

OpenWire is designed and optimized for very high performance. In fact it has been designed for fast
data acquisition systems and can transfer data within the range of tens of millions of samples per second (>
20Ms), event on 500 MHz Pentium systems. One of the problems you will encounter when dealing with
such speed is the need to perform additional copy operations when multiple sink pins are connected to a
single source. In this case on a first glance you have to copy the data for each sink pin. This is not
necessary however, and you must avoid it in order to achieve high performance. The key is a Well-known
technology named lazy evaluation. You are using this technology every day, when you are using strings, so
far the Delphi String and the C++ Builder AnsiString are designed using lazy evaluation. We will not go
very deep into this technology, so far it is not real part of the OpenWire, but we will discuss the basic
principles involved. The idea is that if none of the recipients is in about to modify the data we can keep it at
the same location and just pass a pointer to the data. We need to have a counter indicating how many
pointers we have to the data. Whenever somebody is not interested any more of the data, we just release the
pointer and decrease the counter. When the counter becomes 0 no one needs the data, and the data can be
destroyed. If somebody wants to modify his data, we should check if the counter is one — i.e. there are no
other owners then we can directly apply those changes over the data. When the counter is larger than 1 we
need to make a separated copy of the data and direct the pointer there. The new copy will have its own
counter set to 1 and we will decrease the counter of pointers to the original data. Using this mechanism
means that we can deliver data to multiple recipients without a single copy operation and achieve otherwise
unimaginable speeds. There is one very important detail however. After delivering the data to the last pin in
the list of sink pins, our source pin can release the data. In this case, we can release the ownership of the
data, even before we deliver it. This way if the sink pin modifies the data it will be the only owner and a
copy operation will not take place. If any of the other pins attempt modification a copy operation will be
performed. It is obvious that in order to optimize the system we should try to deliver the data last to the pin,
which most often and most recently had modified the data. This way the system optimizes itself over the
time achieving the best possible performance. OpenWire has build in mechanism to perform this important
and complex operation. This mechanism is called Dynamic streaming order balancing and is very simple to
use. Remember the format of the notification functions?

function Notification(Handler : IOWStream; Operation
IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult; virtual;

11/13/14 60 OpenWire 7.5

Pay close attention to the returned result and the State. We already discussed the TOWNotifyState. One
thing we mentioned was that there is a state called nsLastIteration. This state indicates that we are dealing
with the last sink pin in the list of sink pins and we can release the ownership of the data. The “return”
parameter is a set of conditions. Currently there is only one possible element in the set and this is the
nrDataChanged condition. We have never used this condition in our samples, because we were working
with small size of data, and there were not any large copy operations we needed to optimize for speed.
However when you are using lazy evaluation and you are modifying the data inside the pin you must return
nrDataChanged as a condition. This will allow OpenWire to perform the Dynamic streaming order
balancing, and you will achieve much better performance. Here is a sample of a source pin implementing
such optimization:

function TDemoTimer.FloatPinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
begin

if (Operation.Instance() is TIISuppliedBufferOperation) then

if (Handler.SendSomeData (TIISuppliedBufferOperation (Operation.Instance (
)) .DataBuffer)

begin

// The data has been modified by the SendSomeData function

Result := [nrDataChanged];

Exit;

end;

Result := [];
end;

In this sample we assume that the SendSomeData function returns True if the data has been modified.
Another even much better approach is to design your interface, so the data handling function to return
TOWNotifyResult. Here is an example of such interface taken from a very high performance OpenWire
based VCL library designed by Innovative-Integration www.innovative-dsp.com :

IOWIIFloatStream = interface (IOWStream)
['{58041272-EF20-4696-87E6-9EE46ABFBD89} ']
function Operation(Operation : IOWNotifyOperation; State
TOWNotifyState) : TOWNotifyResult; stdcall;
end;

In this case the Operation function returns TOWNotifyResult and can indicate whether or not the data
has been modified inside. Also this way any other features added to the TOWNotifyResult in the future will
be immediately available in your function. Here is how your notify function will look like in this case:

function TDemoTimer.IIFloatBlockPinNotification(Handler
IOWFloatStream; Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;
begin
if (Operation.Instance() is TIISuppliedBufferOperation) then
begin
Result := Handler.Operation(Operation, State);
Exit;
end;

Result := [];
end;

Here is how your data handling method will look like:

function TAComponent.IIDataOperation(Operation : IOWNotifyOperation;
State : TOWNotifyState)
TOWNotifyResult;

11/13/14 61 OpenWire 7.5

http://www.innovative-dsp.com/

begin
if (NeedToModifyTheData)
begin
// Modify the data here!
Result := [nrDataChanged];
end

else
begin
// Use the data without modification here!
Result := [];
end;

end;

You may never need to use or support the Dynamic streaming order balancing. Most of the applications
use small data to transfer and the speed is not as critical. In those cases you can always return Result :=[]; .
However if the very high speed is critical for you and you are using some form of lazy evaluation, the
mechanism is here working and ready for you to use it.

Dynamic Pin Lists (Arrays)

In many cases you know how many inputs and outputs you need for your component. A filter as
example has usually one input and one output, so it is easy. Sometimes however you may need to allow the
user to specify the number of pins. As example if you have a TAdd component whose output is the sum of
some number inputs, you don’t know how many inputs the user will need, and you can’t provide that
number while you are designing the component. It is possible to create collection properties and to handle
that through them, but it’s a lot of work, and is not very convenient for the end user.

OpenWire provides two very convenient and easy-to-use classes named TOWPinList and
TOWPinListOwner.

TOWPinList is designed for those cases when the amount of pins supported by the list is based on
another property. As example if you have a graph, the number of pins should match the number of channels
on the graph.

TOWPinListOwner is designed for the case when the list should control the amount of pins. It allows
you to specify the pins and automatically allocates and releases them.

Here is an example of how the Pin List properties will appear in the Object Inspector:

I\-"LHistogram'I TWLHistogram = I

Properties | Eweris |

Input WLANWIPlayerl. OutputPin
LowerLevel |1

Mame WLHiztogram1

=] Dutputs 3 Ping
Red SLGenencSinglel.Input
Green SLGenencSingle?. nput
Blue SLGenencSingled. nput
Tag 0

UpperLevel |265

|,':._|| shown A

You can add a pin to the TOWPinList in your code by using the Add method or the AddNamed method:

Delphi Example
PinlList.Add(AnySinkOrSourcePin);
PinList.AddNamed(AnySinkOrSourcePin, ‘My pin’);

C++ Builder Example
PinList->Add (AnySinkOrSourcePin);
PinList->Add (AnySinkOrSourcePin, "My pin");

Add named just describes how the pin will appear in the object inspector.

11/13/14 62 OpenWire 7.5

You can delete pin using the Remove or Delete methods:

Delphi Example
PinList.Remove (AnySinkOrSourcePin);

// or
PinList.Delete(3); // Removes the third pin

C++ Builder Example
PinList->Remove (AnySinkOrSourcePin);

// or
PinList->Delete(3); // Removes the third pin

When using TOWPinListOwner you can resize the list just by assigning the Count:

Delphi Example
PinListOwner.Count := 5;

C++ Builder Example
PinListOwner->Count

SF

You can obtain the pins count from the Count property.
You can access the pins using the Pins property:

Delphi Example
var 1 : Integer;
var Pin : TOWPin;

for I := 0 to PinList.Count - 1 do
begin
Pin := PinlList.Pins[I];
end;

C++ Builder Example
for(int i = 0; 1 < PinList->Count; 1 ++)
{
TOWPin *Pin = PinList->Pins[i 1];
}

Creating Components Using Pin Lists

Let’s create a simple component with multiple inputs using TOWPinListOwner. We will assume that
the component will multiply all the inputs and will send the result through an output(source pin). Here is
the declaration of the component:

TOWLMultiply = class (TComponent)
private
FInputDataArray : array of Single;

protected
FOutput : TOWFloatSourcePin;
FInputs : TOWPinListOwner;
protected

procedure SendData(DataTypeID : PDataTypelD; Operation
IOWNotifyOperation; CustomData : TObject);

function PinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)
TOWNotifyResult;

function CreateInputPin(APinListOwner : TOWPinList) : TOWPin;

procedure DestroyInputPin(APinListOwner : TOWPinList);

11/13/14 63 OpenWire 7.5

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Output : TOWFloatSourcePin read FOutput write FOutput;
property Inputs : TOWPinListOwner read FInputs write FInputs;
end;

The only new thing for us is the declaration of the Inputs. However it’s very much alike the declaration
of a single pin. The only new methods for us are the CreatelnputPin and DestroylnputPin. We will focus on
them after taking a look at the implementation:

constructor TOWLMultiply.Create (AOwner: TComponent) ;

begin
inherited;
FOutput := TOWFloatSourcePin.Create(Self, PinNotification);
FInputs := TOWPinListOwner.CreateEx(Self, 2, 100, CreateInputPin,
DestroyInputPin);
end;

destructor TOWLMultiply.Destroy;
begin

FInputs.Free;

FOutput.Free;

inherited;
end;

function TOWLMultiply.CreateInputPin(APinListOwner : TOWPinList)
TOWPin;
var

Pin : TOWFloatSinkPin;

begin
SetLength (FInputDataArray, APinListOwner.Count + 1);
FInputDataArray[APinListOwner.Count] := 1.0;

Pin := TOWFloatSinkPin.Create(Self, SendData,
TObject (APinListOwner.Count));
FOutput.FunctionSources.Add(Pin);
Result := Pin;
end;

procedure TOWLMultiply.DestroyInputPin(APinListOwner : TOWPinList);
begin

SetLength (FInputDataArray, APinListOwner.Count);
end;

function TOWLMultiply.PinNotification(Handler : IOWFloatStream;
Operation : IOWNotifyOperation; State : TOWNotifyState)

TOWNotifyResult;
var
I : Integer;

Value : Single;

begin
Value := 1;
for T := 0 to FInputs.Count - 1 do
Value := Value * FInputDataArray[I];

11/13/14 64 OpenWire 7.5

Handler.DispatchData (DataTypelD,
TOWSuppliedSingleOperation.Create(Value), State);
Result := [];
end;

procedure TOWLMultiply.SendData(DataTypeID : PDataTypeID; Operation
IOWNotifyOperation; CustomData : TObject);
begin
if (Operation.Instance() is TOWSuppliedSingleOperation) then
begin
FInputDataArray[Integer(CustomData)] :=
TOWSuppliedSingleOperation (Operation.Instance()) .Value;
FOutput.Notify(TOWNotifyOperation.Create());
end;

end;

In the constructor we just create the source pin for the output and a TOWPinListOwner for the inputs.
The constructor of the TOWPinListOwner has 4 parameters. The first and the second are the minimum and
the maximum size of the list — in this case we should have no less than 2 and no more than 100 inputs. The
other two parameters are an event handler, which gets called when new pin is needed and an optional
handler called when the pin will be destroyed. We must provide the pin creation event. Otherwise the pin
list will not be able to know what type of pin we need to create.

Here is a sample of the simplest possible such event handler:

function TOWLMultiply.CreateInputPin(APinListOwner : TOWPinList)
TOWPin;
begin
Result := TOWFloatSinkPin.Create(Self, SendData, NIL));
end;

In this case we just create a new pin and return it. The deletion handler is optional. In our case we are
using it to destroy some internal data associated with the pin, when the pin is destroyed. We will not go into
any details how the component works so far that they are not related to the pin lists.

When you use the TOWPinList you have to maintain the creation and the destruction of the pins your
self. Here is an example of a constructor creating a few pins and organizing them in pin list:

constructor TJustTestComponent.Create (AOwner: TComponent) ;
begin

inherited;

FCombo := TOWPinList.Create(Self, False);

FCombo.AddNamed (TOWTestSinkPin.Create(Self, UpdateData,
PinNotification), 'Test Inputl');

FCombo.AddNamed (TOWTestSinkPin.Create(Self, UpdateData,
PinNotification), 'Test Input2');

FCombo.AddNamed (TOWTestSinkPin.Create(Self, UpdateData,
PinNotification), 'Test Input3');

FCombo.AddNamed (TOWTestSourcePin.Create(Self, UpdateData,
PinNotification), 'Test Outputl');

FCombo.AddNamed (TOWTestSourcePin.Create(Self, UpdateData,
PinNotification), 'Test Output2');

FCombo.AddNamed (TOWTestSourcePin.Create(Self, UpdateData,
PinNotification), 'Test Output3');
end;

The second parameter in the TOWPinList constructor indicates whether or not the pins should be
destroyed when they are deleted from the pin. If the parameter is True, the Pin List will delete them
automatically. Otherwise we will have to manually delete them.

11/13/14 65 OpenWire 7.5

Writing Threading Safe Components with OpenWire

OpenWire 2.4 and higher is threading safe out of the box, however in some cases you may have to write
some additional code in order to write fully thread safe components. This is a huge topic and goes beyond
the scope of this manual but we will cover some basic ideas here.

Each pin has a thread safe locking mechanism. When you send data from a pin to another, all the ins in
the connection will be locked until the data is delivered. In addition when you have a function dependency
set between source and sink pin, they by default will share a lock, and both will be locked at the same time.
This allows the component writer to be sure that the In and Out pin of the component are locked while the
data is processed and race conditions will not happen. Often however the component will include properties
that affect the calculations, but are accessible from the rest of the application. If you have a multithreading
component that is a signal generator, and you have a property that sets the amplitude of the signal, you
must make sure the property is threading safe. There are few ways to do so. You can lock directly the
output pin of the component while setting the property. A more flexible approach is to create a separated
locking object inside the component and make it share lock with the output pin. Here is an example of this
technique:

type TMySignalGen = class (TComponent)
protected
FLock : TOWObject;
FOutputPin : TOWRealSourcePin;
FAmplitude : Integer;

protected
procedure SetAmplitude(Value : Real);
function GetAmplitude() : Real;

public

constructor Create (AOwner: TComponent); override;
destructor Destroy(); override;

published
property Amplitude : Real read GetAmplitude write SetAmplitude;
property OutputPin : TOWRealSourcePin read FOutputPin write
FOutputPin;
end;

constructor TMySignalGen.Create (AOwner: TComponent) ;

begin
inherited;
FLock := TOWObject.Create():;
FOutputPin := TOWRealSourcePin.Create(Self, DispatchOperation);
FLock.AddShareLock (FOutputPin) ;
end;

destructor TMySignalGen.Destroy();
begin

FOutputPin.Free () ;

FLock.Free() ;

inherited;
end;

procedure TMySignalGen.SetAmplitude(Value : Real);
var
AWriteLock : IOWLockSection;

11/13/14 66 OpenWire 7.5

begin

AWritelLock := FLock.WriteLock() ;
FAmplitude := Value;
end;

function TMySignalGen.GetAmplitude ()
var
AReadLock : IOWLockSection;

Real;

begin
AReadLock := FLock.ReadLock () ;
Result := FAmplitude;

end;

Conclusion

OpenWire is a powerful tool for creating flexible and expandable VCL components. It is easy to use
and does require very little code to support the functionality. The OpenWire components are very easy to

use and allow writing of complex applications with zero lines of code.

11/13/14 67

OpenWire 7.5

	OpenWire 7.5
	Open source project
	Version 7.5
	What's New In V7.5
	What's New In V7.0
	What's New In V6.0
	What's New In V5.0
	What's New In V4.5
	What's New In V4.3
	What's New In V4.0
	What's New In V3.1
	What's New In V3.0
	What's New In V2.6
	What's New In V2.5
	What's New In V2.4
	What's New In V2.3
	What's New In V2.2
	What's New In V2.1
	What's New In V2.0
	What's New In V1.8
	OpenWire Web Sites
	License
	Introduction
	Source, Sink Pins, and Multi Sink Pins
	State Pins

	Can I Use OpenWire for My Commercial Development?
	OpenWire Installation
	OpenWire Overview
	Platforms
	The OpenWire Graphical Editor
	Naming Conventions
	How to Use the Demo Package
	Connecting Pins at Design Time (Using Property Editors)
	Connecting Pins At Run Time (From Inside Your Code)
	Understanding Basic OpenWire Pins
	TOWObject
	TOWBasicPin
	TOWPin
	TOWSinkPin
	TOWMultiSinkPin
	TOWSourcePin
	TOWStatePin
	TOWStateDispatcher

	Downstreams and Upstreams
	Change of State Broadcasting
	OpenWire Stream Interfaces
	Connecting and Handshaking
	Standard (Well-known) Interfaces and Standard Pin Types
	Clocking
	Creating Components Using the Standard Interfaces and Pins
	Using the Standard Source and Sink Pins In Your Components
	Using the Standard State Pins In Your Components
	How the Notify Really Works
	Creating And Using Pins Implementing The Standard Interfaces

	Defining Your Own Interfaces (Types Of Data)
	Creating A Pin Implementing Your Interface
	Creating A Pin Capable Of Sending Data Through your Interface
	Registering Your Interface As a Standard One
	Function Dependencies
	Type Dependencies
	Dynamic Streaming Order Balancing
	Dynamic Pin Lists (Arrays)
	Creating Components Using Pin Lists
	Writing Threading Safe Components with OpenWire
	Conclusion

