

www.openwire.org
www.mitov.com

Copyright Boian Mitov 2004 - 2011

Index
Installation...3
Where is PlotLab?...3
Creating a new PlotLab project in Visual C++...3
Creating a simple Scope application...13
Creating a simple Waterfall application...26
Using the TSLCRealBuffer in C++ Builder and Visual C++...39
Distributing your application..42
Deploying your application with the IPP DLLs...42

April 29, 2010 PlotLab VC++ 5.0-2-

Installation

PlotLab comes with an installation program. Just start the installation by double-clicking
on the Setup.exe file and follow the installation instructions.

Where is PlotLab?
After the installation PlotLab is located under a single root directory. The default location
is C:\Program Files\LabPacks. During the installation the user has the option to select
alternative directory.
Here is how the directory structure should look like after the installation:

 Under the PlotLabDemos directory are located the demo files. The help files and the
documentation are located under the Help directory. The DLL directory contains the
redistributable DLL files. The header files needed for your projects are located under the
Include directory. The Release and Debug version of the library is located under the Lib
directory.
It is a great idea to start by opening and compiling the demo files. The demo projects
ware designed with Visual C++ 6.0. They can be opened and compiled under Visual C+
+.NET as well. In this case the IDE will create the necessary solution files.

Creating a new PlotLab project in Visual C++
All of the examples in this manual start with creating a MFC Dialog based project. This
is not a PlotLab requirement, but using the resource editor to design the application
makes writing the examples much easier.
The following chapters will assume that you have created the project and will teach you
how to add specific PlotLab functionality.

April 29, 2010 PlotLab VC++ 5.0-3-

Visual C++ 6.0:
Start by creating a new project.
From the VC++ menu, select | File | New…|

The project type dialog will appear. Select the MFC AppWizard:

April 29, 2010 PlotLab VC++ 5.0-4-

Type a project name. For each example the project name will be different:

Click OK.

Select a Dialog base project from Step 1 and click Next:

April 29, 2010 PlotLab VC++ 5.0-5-

For simplicity disable the ActiveX Controls on Step 2 and click Next:

Leave the default options on Step 3 and click Next:

April 29, 2010 PlotLab VC++ 5.0-6-

Click Finish on step 4:

Confirm the selection by clicking OK:

April 29, 2010 PlotLab VC++ 5.0-7-

At this point you should have a new project created.
From the menu select |Project|Settings…| :

In the Project Settings dialog select the | Link | tab and in the “. Switch to the “Input”
cathegory. In the “Additional library path:” edit box add the path to the library files. If
you have followed the default installation it should be located at C:\Program
Files\LabPacks\Visual C++\Lib:

Switch to the |C/C++| tab.
In the “Additional include directories:” edit box add the path to the header files. If you
have followed the default installation they should be located at C:\Program

April 29, 2010 PlotLab VC++ 5.0-8-

Files\LabPacks\Visual C++\Include:

Click OK.

Now you have fully configured project, and you can start writing the actual code.

Visual C++ 2003:
Start by creating a new project.
From the VC++ menu, select | File | New…| Project… |

April 29, 2010 PlotLab VC++ 5.0-9-

The project type dialog will appear. Select the MFC Application:

Type a project name. For each example the project name will be different:

Click OK.

April 29, 2010 PlotLab VC++ 5.0-10-

Select a Dialog base project from Step 1 and click Next:

For simplicity disable the ActiveX Controls on Step 2 and click Next:

Click Finish.

April 29, 2010 PlotLab VC++ 5.0-11-

At this point you should have a new project created.
From the menu select |Project|Settings…| :

In the Project Property dialog select the Linker General page. In the “Additional
library directories:” edit box add the path to the library files. If you have followed the
default installation it should be located at C:\Program Files\LabPacks\Visual C++\Lib:

Switch to the C/C++ General page.
In the “Additional include directories:” edit box add the path to the header files. If you
have followed the default installation they should be located at C:\Program

April 29, 2010 PlotLab VC++ 5.0-12-

Files\LabPacks\Visual C++\Include:

Click OK.

Now you have fully configured project, and you can start writing the actual code.

Creating a simple Scope application
Create and setup a new project named ScopeDemo as described in the “Creating a new
PlotLab project in Visual C++” chapter.

Select the components on the dialog form:

April 29, 2010 PlotLab VC++ 5.0-13-

Click the “Del” key. They will be deleted from the form:

From the controls toolbar select a “Static Text” control:
VC++ 6: VC++ 2003/2005:

Place the control on the form:

April 29, 2010 PlotLab VC++ 5.0-14-

In Visual C++ 6.0:
From the menu select | View | Properties |:

Change the control’s ID to “ID_SCOPE”:

Switch to the “Extended Styles” tab and check the “Client edge” property so you can
easily see the control on the dialog:

April 29, 2010 PlotLab VC++ 5.0-15-

From the menu select | View | ClassWizard… |:

In the “ClassWizard” select the “Member Variables” tab and select the “ID_SCOPE”
in the “Control IDs” list box, then press “Add Variable…”:

April 29, 2010 PlotLab VC++ 5.0-16-

Set the variable “Category” to be “Control”, and set the name to be m_Scope:

Click OK.

In the “ClassWizard” click OK:

April 29, 2010 PlotLab VC++ 5.0-17-

In Visual C++ 2003/2005:
Change the control’s ID to “ID_SCOPE”:

Set the “Client Edge” property to True so you can easily see the control on the dialog:

From the menu select | Project | Add Variable… |:

April 29, 2010 PlotLab VC++ 5.0-18-

In the “Add Member Variable Wizard” Set the “Variable type” to CStatic, and set the
“Variable name” to be m_Scope:

Click Finish.

Add two buttons on the dialog form:

April 29, 2010 PlotLab VC++ 5.0-19-

In Visual C++ 6.0:
Set the Button1 properties as shown on the picture:

Set the Button2 properties as shown on the picture:

In Visual C++ 2003/2005:
Set the Button1 Caption to “Plot Data”:

And the Button1 ID to “IDC_DATA_BUTTON”:

Set the Button2 Caption to “Clear”:

April 29, 2010 PlotLab VC++ 5.0-20-

And the Button2 ID to “IDC_CLEAR_BUTTON”:

Double click on the “Plot Data” button:

In Visual C++ 6.0:
In the “Add Member Function” dialog click OK:

Add the highlighted lines in the button event handler:
void CScopeDemoDlg::OnDataButton()

{

// TODO: Add your control notification handler code here

float SampleDataArray[1000];

April 29, 2010 PlotLab VC++ 5.0-21-

int i;

for(i = 0; i < 1000; i ++)

SampleDataArray[i] = rand() - 16000;

Scope.Channels[0].Data.SetYData(SampleDataArray, 1000);

for(i = 0; i < 1000; i ++)

SampleDataArray[i] = (float)(Counter++ % 120) * 300 -
16000;

Scope.Channels[1].Data.SetYData(SampleDataArray, 1000);

}

Double click on the “Clear” button:

In Visual C++ 6.0:
In the “Add Member Function” dialog click OK:

Add the highlighted lines in the button event handler:
void CScopeDemoDlg::OnClearButton()

{

// TODO: Add your control notification handler code here

Scope.Channels[0].Data.Clear();

April 29, 2010 PlotLab VC++ 5.0-22-

Scope.Channels[1].Data.Clear();

Scope.Hold = false;

}

Scroll up and add the highlighted lines in the to the “BOOL
CScopeDemoDlg::OnInitDialog()” function:
BOOL CScopeDemoDlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);

if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu);

}

}

// Set the icon for this dialog. The framework does this
automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

VCL_InitControls(m_hWnd);

Scope.Open(m_Scope.m_hWnd);

Scope.Channels.Add();

April 29, 2010 PlotLab VC++ 5.0-23-

Scope.Channels[0].Name = "Random";

Scope.Channels[1].Name = "Ramp";

 VCL_Loaded();

Counter = 0;

return TRUE; // return TRUE unless you set the focus to a
control

}

In Visual C++ 6.0: In Visual Visual C++ 2003/2005:
Select the “FileView” tab: Select the “Solution Explorer” tab:

Double click on the “ScopeDemoDlg.h”:

Add the highlighted lines in the header:
// ScopeDemoDlg.h : header file

//

#if !
defined(AFX_SCOPEDEMODLG_H__8995F2E8_CC33_4FA3_8441_899A6D60AB21__INC
LUDED_)

#define
AFX_SCOPEDEMODLG_H__8995F2E8_CC33_4FA3_8441_899A6D60AB21__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include <CSLScope.h>

April 29, 2010 PlotLab VC++ 5.0-24-

///
////////

// CScopeDemoDlg dialog

class CScopeDemoDlg : public CDialog

{

// Construction

public:

CScopeDemoDlg(CWnd* pParent = NULL); // standard
constructor

// Dialog Data

//{{AFX_DATA(CScopeDemoDlg)

enum { IDD = IDD_SCOPEDEMO_DIALOG };

CStatic m_Scope;

//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CScopeDemoDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

//}}AFX_VIRTUAL

// Implementation

protected:

CTSLScope Scope;

int Counter;

protected:

HICON m_hIcon;

// Generated message map functions

//{{AFX_MSG(CScopeDemoDlg)

virtual BOOL OnInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();

April 29, 2010 PlotLab VC++ 5.0-25-

afx_msg void OnDataButton();

afx_msg void OnClearButton();

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations
immediately before the previous line.

#endif // !
defined(AFX_SCOPEDEMODLG_H__8995F2E8_CC33_4FA3_8441_899A6D60AB21__INC
LUDED_)

Compile and run the application. Click the “Plot Data” button few times:

Congratulations! You have just created your first PlotLab application.

Creating a simple Waterfall application
Create and setup a new project named WaterfallDemo as described in the “Creating a
new PlotLab project in Visual C++” chapter.

April 29, 2010 PlotLab VC++ 5.0-26-

Select the components on the dialog form:

Click the “Del” key. They will be deleted from the form:

From the controls toolbar select a “Static Text” control:
VC++ 6: VC++ 2003/2005

Place the control on the form:

April 29, 2010 PlotLab VC++ 5.0-27-

In Visual C++ 6.0:
From the menu select | View | Properties |:

Change the control’s ID to “ID_WATERFALL”:

April 29, 2010 PlotLab VC++ 5.0-28-

Switch to the “Extended Styles” tab and check the “Client edge” property so you can
easily see the control on the dialog:

From the menu select | View | ClassWizard… |:

In the “ClassWizard” select the “Member Variables” tab and select the
“ID_WATERFALL” in the “Control IDs” list box, then press “Add Variable…”:

April 29, 2010 PlotLab VC++ 5.0-29-

Set the variable “Category” to be “Control”, and set the name to be m_Waterfall:

Click OK.

In the “ClassWizard” click OK:

April 29, 2010 PlotLab VC++ 5.0-30-

In Visual C++ 2003/2005:
Change the control’s ID to “ID_WATERFALL”:

Switch to the “Extended Styles” tab and check the “Client edge” property so you can
easily see the control on the dialog:

From the menu select | Project | Add Variable… |:

April 29, 2010 PlotLab VC++ 5.0-31-

In the “Add Member Variable Wizard” Set the “Variable type” to CStatic, and set the
“Variable name” to be m_Waterfall:

Click Finish.

Add two buttons on the dialog form:

April 29, 2010 PlotLab VC++ 5.0-32-

In Visual C++ 6.0:
Set the Button1 properties as shown on the picture:

Set the Button2 properties as shown on the picture:

Set the control’s ID to “IDC_DATA_BUTTON”:

Change the control’s Caption to “Plot Data”:

Select Button2 on the form.

Change the control’s ID to “IDC_CLEAR_BUTTON”:

April 29, 2010 PlotLab VC++ 5.0-33-

Change the control’s Caption to “Clear”:

Double click on the “Plot Data” button:

In Visual C++ 6.0:
In the “Add Member Function” dialog click OK:

Add the highlighted lines in the button event handler:
void CScopeDemoDlg::OnDataButton()

{

// TODO: Add your control notification handler code here

float SampleDataArray[1000];

for(int i = 0; i < 1000; i ++)

SampleDataArray[i] = rand() - 16000;

Waterfall.Data.AddData(SampleDataArray, 1000);

}

April 29, 2010 PlotLab VC++ 5.0-34-

Double click on the “Clear” button:

In Visual C++ 6.0:
In the “Add Member Function” dialog click OK:

Add the highlighted lines in the button event handler:
void CScopeDemoDlg::OnClearButton()

{

// TODO: Add your control notification handler code here

Waterfall.Data.Clear();

Waterfall.Hold = false;

}

Scroll up and add the highlighted lines in the to the “BOOL
CScopeDemoDlg::OnInitDialog()” function:
BOOL CWaterfallDemoDlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

April 29, 2010 PlotLab VC++ 5.0-35-

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);

if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu);

}

}

// Set the icon for this dialog. The framework does this
automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

VCL_InitControls(m_hWnd);

Waterfall.Open(m_Waterfall.m_hWnd);

VCL_Loaded();

return TRUE; // return TRUE unless you set the focus to a
control

}

In Visual C++ 6.0: In Visual Visual C++ 2003/2005:
Select the “FileView” tab: Select the “Solution Explorer” tab:

April 29, 2010 PlotLab VC++ 5.0-36-

Double click on the “ScopeDemoDlg.h”:

Add the highlighted lines in the header:
// WaterfallDemoDlg.h : header file

//

#if !
defined(AFX_WATERFALLDEMODLG_H__F20C38B5_B9AC_427B_8DA0_F5FF9A88FECE_
INCLUDED)

#define
AFX_WATERFALLDEMODLG_H__F20C38B5_B9AC_427B_8DA0_F5FF9A88FECE__INCLUDE
D_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include <CSLWaterfall.h>

///
////////

// CWaterfallDemoDlg dialog

class CWaterfallDemoDlg : public CDialog

{

// Construction

public:

CWaterfallDemoDlg(CWnd* pParent = NULL); // standard
constructor

// Dialog Data

//{{AFX_DATA(CWaterfallDemoDlg)

April 29, 2010 PlotLab VC++ 5.0-37-

enum { IDD = IDD_WATERFALLDEMO_DIALOG };

CStatic m_Waterfall;

//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CWaterfallDemoDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

//}}AFX_VIRTUAL

// Implementation

protected:

CTSLWaterfall Waterfall;

protected:

HICON m_hIcon;

// Generated message map functions

//{{AFX_MSG(CWaterfallDemoDlg)

virtual BOOL OnInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();

afx_msg void OnDataButton();

afx_msg void OnClearButton();

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations
immediately before the previous line.

#endif // !
defined(AFX_WATERFALLDEMODLG_H__F20C38B5_B9AC_427B_8DA0_F5FF9A88FECE_
INCLUDED)

April 29, 2010 PlotLab VC++ 5.0-38-

Compile and run the application. Click the “Plot Data” button few times:

You have learned how to use the Waterfall component from inside your Visual C++
application.

Using the TSLCRealBuffer in C++ Builder and Visual C++
The C++ Builder version of the library comes with a powerful data buffer class, called
TSLCRealBuffer.
The TSLCRealBuffer is capable of performing basic math operations over the data as
well as some basic signal processing functions. The data buffer also uses copy on write
algorithm improving dramatically the application performance.
The TSLCRealBuffer is an essential part of the SignalLab generators and filters, but it
can be used independently in your code.
You have seen already some examples of using TSLCRealBuffer in the previous
chapters. Here we will go into a little bit more details about how TSLCRealBuffer can be
used.
In order to use TSLCRealBuffer you must include SLCRealBuffer.h directly or indirectly
(trough another include file):
#include <SLCRealBuffer.h>

Once the file is included you can declare a buffer:
Here is how you can declare a 1024 samples buffer:
TSLCRealBuffer Buffer(1024);

Version 4.0 and up does not require the usage of data access objects. The data objects are
now obsolete and have been removed from the library.

You can obtain the current size of a buffer by calling the GetSize method:
Int ASize = Buffer.GetSize(); // Obtains the size of the buffers

You can resize (change the size of) a buffer:
Buffer.Resize(2048); // Changes the size to 2048

April 29, 2010 PlotLab VC++ 5.0-39-

You can set all of the elements (samples) of the buffer to a value:
Buffer.Set(30); // Sets all of the elements to 30.

You can access individual elements (samples) in the buffer:
Buffer [5] = 3.7; // Sets the fifth elment to 3.7

Double AValue = Buffer [5]; // Assigns the fifth element to a
variable

You can obtain read, write or modify pointer to the buffer data:
const double *data = Buffer.Read() // Starts reading only

double *data = Buffer.Write()// Starts writing only

double *data = Buffer.Modify()// Starts reading and writing

Sometimes you need a very fast way of accessing the buffer items. In this case, you can
obtain a direct pointer to the internal data buffer. The buffer is based on copy on write
technology for high performance. The mechanism is encapsulated inside the buffer, so
when working with individual items you don’t have to worry about it. If you want to
access the internal buffer for speed however, you will have to specify up front if you are
planning to modify the data or just to read it. The TSLCRealBuffer has 3 methods for
accessing the data Read(), Write(), and Modify (). Read() will return a constant pointer to
the data. You should use this method when you don’t intend to modify the data and just
need to read it. If you want to create new data from scratch and don’t intend to preserve
the existing buffer data, use Write(). If you need to modify the data you should use
Modify (). Modify () returns a non constant pointer to the data, but often works slower
than Read() or Write(). Here are some examples:
const double *pcData = Buffer.Read(); // read only data pointer

double Value = *pcData; // OK!

*pcData = 3.5; // Wrong!

double *pData = Buffer.Write(); // generic data pointer

double Value = *pData; // OK!

*pData = 3.5; // OK!

You can assign one buffer to another:
Buffer1 = Buffer2;

April 29, 2010 PlotLab VC++ 5.0-40-

You can do basic buffer arithmetic:
TSLCRealBuffer Buffer1(1024);

TSLCRealBuffer Buffer2(1024);

TSLCRealBuffer Buffer3(1024);

Buffer1.Set(20.5);

Buffer2.Set(5);

Buffer3 = Buffer1 + Buffer2;

Buffer3 = Buffer1 - Buffer2;

Buffer3 = Buffer1 * Buffer2;

Buffer3 = Buffer1 / Buffer2;

In this example the elements of the Buffer3 will be result of the operation (+,-,* or /)
between the corresponding elements of Buffer1 and Buffer2.
You can add, subtract, multiply or divide by constant:
// Adds 4.5 to each element of the buffer

Buffer1 = Buffer2 + 4.5;

// Subtracts 4.5 to each element of the buffer

Buffer1 = Buffer2 - 4.5;

// Multiplies the elements by 4.5

Buffer1 = Buffer2 * 4.5;

// Divides the elements by 4.5

Buffer1 = Buffer2 / 4.5;

You can do “in place” operations as well:
Buffer1 += Buffer2;

Buffer1 += 4.5;

Buffer1 -= Buffer2;

Buffer1 -= 4.5;

Buffer1 *= Buffer2;

Buffer1 *= 4.5;

Buffer1 /= Buffer2;

April 29, 2010 PlotLab VC++ 5.0-41-

Buffer1 /= 4.5;

Those are just some of the basic buffer operations provided by SignalLab.
If you are planning to use some of the more advanced features of TSLCRealBuffer please
refer to the online help.
SignalLab also provides TSLCComplexBuffer and TSLCIntegerBuffer. They work
similar to the TSLCRealBuffer but are intended to be used with Complex and Integer
data. For more information on TSLCComplexBuffer and TSLCIntegerBuffer please refer
to the online help.

Distributing your application
Once you have finished the development of your application you most likely will need to
distribute it to other systems. In order for the built application to work, you will have to
include a set of DLL files together with the distribution. The necessary files can be found
under the [install path]\DLL directory([install path] is the location where the library was
installed).
You can distribute them to the [Windows]\System32 ([Windows]\SysWOW64 in 64 bit
Windows) directory, or to the distribution directory of your application([Windows] is the
Windows directory - usually C:\WINNT or C:\WINDOWS).

Deploying your application with the IPP DLLs
The application will work, however the performance can be improved by also copying
the Intel IPP DLLs provided with the library.
The DLLs are under the [install path]\LabPacks\IppDLL directory([install path] is the
location where the library was installed).
In 32 bit Windows to deploy IPP, copy the files to the [Windows]\System32 directory on
the target system.
In 64 bit Windows to deploy IPP, copy the files to the [Windows]\SysWOW64 directory
on the target system.
[Windows] is the Windows directory - usually C:\WINNT or C:\WINDOWS
This will improve the performance of your application on the target system.

April 29, 2010 PlotLab VC++ 5.0-42-

	Installation
	Where is PlotLab?
	Creating a new PlotLab project in Visual C++
	Creating a simple Scope application
	Creating a simple Waterfall application
	Using the TSLCRealBuffer in C++ Builder and Visual C++
	Distributing your application
	Deploying your application with the IPP DLLs

