

www.openwire.org
www.mitov.com

Copyright Boian Mitov 2004 - 2014

Index
Installation ... 3
Where is VisionLab? ... 3
Why some of the examples don’t work? ... 3
Creating a simple video capture application using DirectShow ... 4
Creating a simple contour detection application ... 14
Using the TSLCRealBuffer in C++ Builder and Visual C++ ... 19
Distributing your application .. 22
Deploying your 32 bit application with the IPP DLLs ... 22
Deploying your 64 bit application .. 22

November 13, 2014 VisionLab 7.5-2-

Installation

VisionLab comes with an installation program. Just start the installation by double-
clicking on the Setup.exe file and follow the installation instructions.

Where is VisionLab?
After the installation, start your Delphi or C++ Builder.
Scroll the “Component Palette”, until you see the last four tabs:

If the installation was successful, they should be named “Video Lab”, “Signal Lab”,
“Audio Lab”, and “Vision Lab”.
On the SignalLab palette you will have only a subset of the SignalLab components
necessary for processing histogram data. SignalLab is a separated product, and will not
be shipped as full with VisionLab.
On the AudioLab palette you will have only a subset of the AudioLab components
necessary for basic processing audio data. AudioLab is a separated product, and will not
be shipped as full with VisionLab.
On the VideoLab palette you will have only a subset of the AudioLab components
necessary for video capturing, and visualization.
VideoLab is a separated product, and will not be shipped as full with VisionLab.

Only the following two components of VideoLab will be available:

Only the following components of SignalLab will be available:

Only the following components of AudioLab will be available:

Why some of the examples don’t work?
Video lab is a unique library that supports both the Win32 API’s AVIFile (VFW)
functions (ACM) and DirectShow. You as a developer have the ultimate choice to use
either the Win32 API or DirectShow components or both at the same time.

November 13, 2014 VisionLab 7.5-3-

The advantage of the Win32 API components is that hey will work on any Windows 95
and up system out of the box, however they are much less capable than the DirectShow
components, and should be avoided if not necessary.
The advantage of the DirectShow components is that they will use the latest and greatest
capability of DirectShow, the latest video camera devices, and TV Tuners, but they
require DirectShow 9.0 or higher to be installed in order to work.
If you don’t have DirectX 9.0 or higher installed on your system, you will not be able to
use see the DirectShow examples working.

Creating a simple video capture application using
DirectShow

WARNING: In order to run the application in this example you must have DirectX 9.0 or
higher installed!
From the Delphi/C++Builder menu select | File | New | Application |.

An empty form will appear on the screen.
From the Object Inspector change the form Caption to “DirectShow Video Capture
Demo”.

From the “Component Palette” select the “Video Lab” tab:

From the tab select and drop on the form the following components:

One - TVLDSCapture

Two - TVLImageDisplay

From the “Component Palette” select the “Vision Lab” tab:

November 13, 2014 VisionLab 7.5-4-

From the tab select and drop on the form the following component:

One - TVLMotionDetect

On the form select the VLDSCapture1 component.
Your form will look something like this:

In the Object Inspector expand the VideoCaptureDevice property and set the
DeviceName to a video source(web camera, etc.) available on your system:

In the Object inspector select the OutputPin property and click the button.

You should see the Pin Editor:

November 13, 2014 VisionLab 7.5-5-

Click on the check boxes to make it the connections as shown on the picture, and then
click OK.

On the form select the VLMotionDetect1 component:

In the Object inspector select the OutputPin property and click the button.

In the Pin Editor make the following selection and click OK:

Compile and run the application. You should see the two displays like shown on the
picture. The first display will show the input of the camera, and the second will show the
last frame where there was a movement detected:

November 13, 2014 VisionLab 7.5-6-

Congratulations! You have just created your first Motion Detection application.
Here are the OpenWire connections in this application:

This example is probably too sensitive and will detect even the slightest movement. You
may want to reduce the sensitivity in some areas of the image, and detect movements
only in particular zone. To do so, double-click on the VLMotionDetect1 component:

The Motion Grid Editor will appear:

You can change the size of the grid, and you can set the sensitivity in each cell by
pressing the keys 0-9 when the cell is selected. 0 means no sensitivity, and 9 means the
highest sensitivity:

November 13, 2014 VisionLab 7.5-7-

Click OK, compile and run the application, you will see that now it will be sensitive to
movements in the upper right corner of the image:

The next step is to get the information about where in the image the motion event
occurred, as well as to do something like send alert, or take other type of action.

From the “Component Palette” select the “Standard” tab:

select and drop on the form a TMemo.

 - TMemo

 On the form, select the VLMotionDetect1 component:

In the Object Inspector set the SynchronizeType tp stQueue:

November 13, 2014 VisionLab 7.5-8-

Switch to the Events tab, and double-click on the OnMotionDetect event:

If you are using Delphi, In the event handler add the following code:
procedure TForm1.VLMotionDetect1MotionDetect(Sender: TObject;
 Motions: TVLMotions);
begin
 Memo1.Lines.Add('Movement at ' + IntToStr(Motions.MaxCell.X) +
',' + IntToStr(Motions.MaxCell.Y));
end;

If you are using C++ Builder, In the event handler add the following code:
void __fastcall TForm1::VLMotionDetect1MotionDetect(TObject *Sender,
 TVLMotions *Motions)
{
 Memo1->Lines->Add(AnsiString("Movement at ") + Motions->MaxCel-
l.x + "," + Motions->MaxCell.y);
}

Select the form.
In the object inspector double-click on the OnClose event:

If you are using Delphi, In the event handler add the following code:
procedure TForm1.FormClose(Sender: TObject; var Action:
TCloseAction);
begin
 VLDSCapture1.Stop();
end;

If you are using C++ Builder, In the event handler add the following code:
void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Ac-
tion)
{
 VLDSCapture1->Stop();
}

November 13, 2014 VisionLab 7.5-9-

Compile and run the application. You will see the movements reported in the Memo:

The last step is to obtain the full motion information for each cell.

From the “Component Palette” select the “Additional” tab:

select and drop on the form a TStringGrid component:

 - TStringGrid.

Rearange the form like this one:

November 13, 2014 VisionLab 7.5-10-

In the Object Inspector set the FixedCols and FixedRows of the StringGrid1 to 0:

In the Object Inspector set the DefaultColWidth and DefaultRowHeight of the
StringGrid1 to 20:

From the “Component Palette” select the “Video Lab” tab:

From the tab select and drop on the form the following component:

- TVLGenericFilter

November 13, 2014 VisionLab 7.5-11-

The form now will look like this:

In the Object Inspector select the OutputPin property and click the button.

Make the following selection in the Pin Editor and click OK:

In the ObjectInspector set the SynchronizeType to stSingleBuffer:

November 13, 2014 VisionLab 7.5-12-

Double-click on the LVGenericFilter1 on the form:

If you are using Delphi, In the event handler add the following code:
procedure TForm1.VLGenericFilter1ProcessData(Sender: TObject;
 InBuffer: IVLImageBuffer; var OutBuffer: IVLImageBuffer;
 var SendOutputData: Boolean);
var
 X, Y : Integer;

begin
 StringGrid1.ColCount := VLMotionDetect1.MotionGrid.Cols;
 StringGrid1.RowCount := VLMotionDetect1.MotionGrid.Rows;

 for X := 0 to StringGrid1.ColCount - 1 do
 for Y := 0 to StringGrid1.RowCount - 1 do
 StringGrid1.Cells[X, Y] :=
IntToStr(VLMotionDetect1.Items[X, Y]);

end;

If you are using C++ Builder, In the event handler add the following code:
void __fastcall TForm1::VLGenericFilter1ProcessData(TObject *Sender,
 TVLCVideoBuffer InBuffer, TVLCVideoBuffer &OutBuffer,
 bool &SendOutputData)
{
 StringGrid1->ColCount = VLMotionDetect1->MotionGrid->Cols;
 StringGrid1->RowCount = VLMotionDetect1->MotionGrid->Rows;

 for(int x = 0; x < StringGrid1->ColCount; x ++)
 for(int y = 0; y < StringGrid1->RowCount; y ++)
 StringGrid1->Cells[x][y] = VLMotionDetect1->Items[x]
[y];

}

November 13, 2014 VisionLab 7.5-13-

Compile and run the application. You will see the movements reported in the StringGrid
component:

Congratulations! You have just learned how to create complex motion detection
applications with just few lines of code.

Creating a simple contour detection application
From the Delphi/C++Builder menu select | File | New | Application |.

An empty form will appear on the screen.

From the “Component Palette” select the “Video Lab” tab:

From the tab select and drop on the form the following components:

November 13, 2014 VisionLab 7.5-14-

One - TVLAVIPlayer

Two - TVLImageDisplay

From the “Component Palette” select the “Vision Lab” tab:

From the tab select and drop on the form the following component:

One - TVLCanny

One - TVLFindContour

From the Component Palette select the “Standard” tab:

From the tab select and drop on the form the following component:

One - TLabel

On the form select the VLAVIPlayer1 component.
Your form will look something like this:

November 13, 2014 VisionLab 7.5-15-

In the Object Inspector select the FileName property and click the button.

A File selection dialog will appear:

Select a file to play and click “Open”.

In the Object inspector select the OutputPin property and click the button.

You should see the Pin Editor:

Click on the check boxes to make it look as in the picture, and then click OK.

November 13, 2014 VisionLab 7.5-16-

Select the VLCanny1 component on the form:

In the Object inspector select the OutputPin property and click the button.

Check the following connection in the Pin Editor and click OK:

Select the VLFindContours1 component on the form:

In the Object inspector set the SynchronizeType property to stQueue:

Double click on the VLFindContours1 component:

If you are using Delphi, in the event handler add the following code:
procedure TForm1.VLFindContours1Contours(Sender: TObject;

November 13, 2014 VisionLab 7.5-17-

 Contours: TVLContours);
var
 I : Integer;
 J : Integer;
 ABitmap : TBitmap;

begin
 ABitmap := TBitmap.Create();
 ABitmap.Width := 240;
 ABitmap.Height := 180;
 Label1.Caption := IntToStr(Contours.Count);
 for I := 0 to Contours.Count - 1 do
 begin
 if(Contours[I].ContourType = ctOuter) then
 ABitmap.Canvas.Pen.Color := clGreen

 else
 ABitmap.Canvas.Pen.Color := clBlue;

 for J := 0 to Contours[I].Count - 1 do
 begin
 if(J = 0) then
 ABitmap.Canvas.MoveTo(Contours[I][J].X, Contours[I][J
].Y)

 else
 ABitmap.Canvas.LineTo(Contours[I][J].X, Contours[I][J
].Y);

 end;
 end;

 ABitmap.Canvas.Pen.Color := clRed;
 ABitmap.Canvas.Brush.Style := bsClear;
 for I := 0 to Contours.Count - 1 do
 ABitmap.Canvas.Rectangle(Contours[I].BoundRect);

 VLImageDisplay2.DisplayBitmap(ABitmap);
 ABitmap.Free();
end;

If you are using C++ Builder, in the event handler add the following code:
void __fastcall TForm1::VLFindContours1Contours(TObject *Sender,
 TVLContours *Contours)
{
 Graphics::TBitmap *ABitmap = new Graphics::TBitmap();
 ABitmap->Width = 240;
 ABitmap->Height = 180;
 Label1->Caption = Contours->Count;
 for(int i = 0; i < Contours->Count; i ++)
 {
 if(Contours->Items[i]->ContourType == ctOuter)
 ABitmap->Canvas->Pen->Color = clGreen;

 else
 ABitmap->Canvas->Pen->Color = clBlue;

November 13, 2014 VisionLab 7.5-18-

 for(int j = 0; j < Contours->Items[i]->Count; j ++)
 {
 if(j == 0)
 ABitmap->Canvas->MoveTo(Contours->Items[i]->Items[j].x,
Contours->Items[i]->Items[j].y);

 else
 ABitmap->Canvas->LineTo(Contours->Items[i]->Items[j].x,
Contours->Items[i]->Items[j].y);

 }
 }

 ABitmap->Canvas->Pen->Color = clRed;
 ABitmap->Canvas->Brush->Style = bsClear;
 for(int i = 0; i < Contours->Count; i ++)
 ABitmap->Canvas->Rectangle(Contours->Items[i]->BoundRect);

 VLImageDisplay2->DisplayBitmap(ABitmap);
 delete ABitmap;
}

Compile and run the application.
You should see the contours and the bounding rectangles drawn:

Here are the OpenWire connections in this application:

Using the TSLCRealBuffer in C++ Builder and Visual C++
The C++ Builder version of the library comes with a powerful data buffer class, called
TSLCRealBuffer.

November 13, 2014 VisionLab 7.5-19-

The TSLCRealBuffer is capable of performing basic math operations over the data as
well as some basic signal processing functions. The data buffer also uses copy on write
algorithm improving dramatically the application performance.
The TSLCRealBuffer is an essential part of the SignalLab generators and filters, but it
can be used independently in your code.
You have seen already some examples of using TSLCRealBuffer in the previous
chapters. Here we will go into a little bit more details about how TSLCRealBuffer can be
used.
In order to use TSLCRealBuffer you must include SLCRealBuffer.h directly or indirectly
(trough another include file):
#include <SLCRealBuffer.h>

Once the file is included you can declare a buffer:
Here is how you can declare a 1024 samples buffer:
TSLCRealBuffer Buffer(1024);

Version 4.0 and up does not require the usage of data access objects. The data objects are
now obsolete and have been removed from the library.

You can obtain the current size of a buffer by calling the GetSize method:
Int ASize = Buffer.GetSize(); // Obtains the size of the buffers

You can resize (change the size of) a buffer:
Buffer.Resize(2048); // Changes the size to 2048

You can set all of the elements (samples) of the buffer to a value:
Buffer.Set(30); // Sets all of the elements to 30.

You can access individual elements (samples) in the buffer:
Buffer [5] = 3.7; // Sets the fifth elment to 3.7

Double AValue = Buffer [5]; // Assigns the fifth element to a vari-
able

You can obtain read, write or modify pointer to the buffer data:
const double *data = Buffer.Read() // Starts reading only
double *data = Buffer.Write()// Starts writing only
double *data = Buffer.Modify()// Starts reading and writing

Sometimes you need a very fast way of accessing the buffer items. In this case, you can
obtain a direct pointer to the internal data buffer. The buffer is based on copy on write
technology for high performance. The mechanism is encapsulated inside the buffer, so
when working with individual items you don’t have to worry about it. If you want to
access the internal buffer for speed however, you will have to specify up front if you are
planning to modify the data or just to read it. The TSLCRealBuffer has 3 methods for
accessing the data Read(), Write(), and Modify (). Read() will return a constant pointer to

November 13, 2014 VisionLab 7.5-20-

the data. You should use this method when you don’t intend to modify the data and just
need to read it. If you want to create new data from scratch and don’t intend to preserve
the existing buffer data, use Write(). If you need to modify the data you should use
Modify (). Modify () returns a non constant pointer to the data, but often works slower
than Read() or Write(). Here are some examples:
const double *pcData = Buffer.Read(); // read only data pointer

double Value = *pcData; // OK!
*pcData = 3.5; // Wrong!

double *pData = Buffer.Write(); // generic data pointer

double Value = *pData; // OK!
*pData = 3.5; // OK!

You can assign one buffer to another:
Buffer1 = Buffer2;

You can do basic buffer arithmetic:
TSLCRealBuffer Buffer1(1024);
TSLCRealBuffer Buffer2(1024);
TSLCRealBuffer Buffer3(1024);

Buffer1.Set(20.5);
Buffer2.Set(5);

Buffer3 = Buffer1 + Buffer2;
Buffer3 = Buffer1 - Buffer2;
Buffer3 = Buffer1 * Buffer2;
Buffer3 = Buffer1 / Buffer2;

In this example the elements of the Buffer3 will be result of the operation (+,-,* or /)
between the corresponding elements of Buffer1 and Buffer2.
You can add, subtract, multiply or divide by constant:
// Adds 4.5 to each element of the buffer
Buffer1 = Buffer2 + 4.5;

// Subtracts 4.5 to each element of the buffer
Buffer1 = Buffer2 - 4.5;

// Multiplies the elements by 4.5
Buffer1 = Buffer2 * 4.5;

// Divides the elements by 4.5
Buffer1 = Buffer2 / 4.5;

You can do “in place” operations as well:
Buffer1 += Buffer2;
Buffer1 += 4.5;

November 13, 2014 VisionLab 7.5-21-

Buffer1 -= Buffer2;
Buffer1 -= 4.5;

Buffer1 *= Buffer2;
Buffer1 *= 4.5;

Buffer1 /= Buffer2;
Buffer1 /= 4.5;

Those are just some of the basic buffer operations provided by SignalLab.
If you are planning to use some of the more advanced features of TSLCRealBuffer please
refer to the online help.
SignalLab also provides TSLCComplexBuffer and TSLCIntegerBuffer. They work
similar to the TSLCRealBuffer but are intended to be used with Complex and Integer
data. For more information on TSLCComplexBuffer and TSLCIntegerBuffer please refer
to the online help.

Distributing your application
Once you have finished the development of your application you most likely will need to
distribute it to other systems. In order for some VisionLab built application to work, you
will have to include a set of DLL files together with the distribution. The necessary files
can be found under the [install path]\DLL directory([install path] is the location where
the VisionLab was installed). You can distribute them to the [Windows]\System32
([Windows]\SysWOW64 on 64 bit Windows) directory, or to the distribution directory of
your application([Windows] is the Windows directory - usually C:\WINNT or
C:\WINDOWS).
Not all of the components in the library require additional DLLs. Please check if the
DLLs are needed by the application before including them in the install.

Deploying your 32 bit application with the IPP DLLs
The compiled applications can be deployed to the target system by simply copying the
executable. The application will work, however the performance can be improved by also
copying the Intel IPP DLLs provided with the library.
The DLLs are under the [install path]\LabPacks\IppDLL\Win32 directory([install path]
is the location where the library was installed).
In 32 bit Windows to deploy IPP, copy the files to the [Windows]\System32 directory on
the target system.
In 64 bit Windows to deploy IPP, copy the files to the [Windows]\SysWOW64 directory
on the target system.
[Windows] is the Windows directory - usually C:\WINNT or C:\WINDOWS
This will improve the performance of your application on the target system.

Deploying your 64 bit application

The current version of the library requires when deploying 64 bit applications, the Intel
IPP DLLs to be deployed as well.

November 13, 2014 VisionLab 7.5-22-

The DLLs are under the [install path]\LabPacks\IppDLL\Win64 directory([install path]
is the location where the library was installed).

To deploy IPP, copy the files to the [Windows]\System32 directory on the target system.

[Windows] is the Windows directory - usually C:\WINNT or C:\WINDOWS
This will improve the performance of your application on the target system.

November 13, 2014 VisionLab 7.5-23-

	Installation
	Where is VisionLab?
	Why some of the examples don’t work?
	Creating a simple video capture application using DirectShow
	Creating a simple contour detection application
	Using the TSLCRealBuffer in C++ Builder and Visual C++
	Distributing your application
	Deploying your 32 bit application with the IPP DLLs
	Deploying your 64 bit application

